Stabilization and Reduced Cytotoxicity of Amyloid Beta Aggregates in the Presence of Catechol Neurotransmitters

Armstrong RA (2006) Plaques and tangles and the pathogenesis of Alzheimer’s disease. Folia Neuropathol 44:1–11

CAS  PubMed  Google Scholar 

Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464. https://doi.org/10.1016/j.redox.2017.10.014

Article  CAS  PubMed  Google Scholar 

Galeazzi L, Ronchi P, Franceschi C, Giunta S (1999) In vitro peroxidase oxidation induces stable dimers of β-amyloid (1–42) through dityrosine bridge formation. Amyloid 6:7–13. https://doi.org/10.3109/13506129908993282

Article  CAS  PubMed  Google Scholar 

Canevari L, Abramov AY, Duchen MR (2004) Toxicity of amyloid β peptide: tales of calcium, mitochondria, and oxidative stress. Neurochem Res 29:637–650. https://doi.org/10.1023/B:NERE.0000014834.06405.af

Article  CAS  PubMed  Google Scholar 

Butterfield DA (1997) β-amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Chem Res Toxicol 10:495–506. https://doi.org/10.1021/tx960130e

Article  CAS  PubMed  Google Scholar 

Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Review: Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130:184–208. https://doi.org/10.1006/jsbi.2000.4274

Article  CAS  PubMed  Google Scholar 

Hensley K, Butterfieldld DA, Hall N, Cole P, Subramaniam R, Mark R, Mattson MP, Markesbery WR, Harris ME, Aksenov M, Aksenova M, Wu JF, Carney JM (1996) Reactive oxygen species as causal agents in the neurotoxicity of the Alzheimer’s Disease-Associated amyloid beta peptide. Ann N Y Acad Sci 786:120–134. https://doi.org/10.1111/j.1749-6632.1996.tb39057.x

Article  CAS  PubMed  Google Scholar 

Hardy JA, Higgins GA (1992) Alzheimer’s Disease: the amyloid cascade hypothesis. Science 256:184–185. https://doi.org/10.1126/science.1566067

Article  CAS  PubMed  Google Scholar 

Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cline EN, Bicca MA, Viola KL, Klein WL (2018) The Amyloid-β oligomer hypothesis: beginning of the third decade. J Alzheimers Dis 64:S567–S610. https://doi.org/10.3233/JAD-179941

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bemporad F, Chiti F (2012) Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem Biol 19:315–327. https://doi.org/10.1016/j.chembiol.2012.02.003

Article  CAS  PubMed  Google Scholar 

Bayer, (2010) Intracellular accumulation of amyloid-beta—a predictor for synaptic dysfunction and neuron loss in Alzheimer’s disease. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2010.00008

Article  PubMed  Google Scholar 

Necula M, Kayed R, Milton S, Glabe CG (2007) Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. J Biol Chem 282:10311–10324. https://doi.org/10.1074/jbc.M608207200

Article  CAS  PubMed  Google Scholar 

Todd K, Ghiso J, Rostagno A (2016) Oxidative stress and mitochondria-mediated cell death mechanisms triggered by the familial Danish dementia ADan amyloid. Neurobiol Dis 85:130–143. https://doi.org/10.1016/j.nbd.2015.10.003

Article  CAS  PubMed  Google Scholar 

Fändrich M (2012) Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity. J Mol Biol 421:427–440. https://doi.org/10.1016/j.jmb.2012.01.006

Article  CAS  PubMed  Google Scholar 

Ferreira ST, Klein WL (2011) The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem 96:529–543. https://doi.org/10.1016/j.nlm.2011.08.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakono M, Zako T (2010) Amyloid oligomers: formation and toxicity of Aβ oligomers: Formation of toxic Aβ oligomers. FEBS J 277:1348–1358. https://doi.org/10.1111/j.1742-4658.2010.07568.x

Article  CAS  PubMed  Google Scholar 

Stefani M (2010) Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity: Amyloid oligomer/fibril cytotoxicity. FEBS J 277:4602–4613. https://doi.org/10.1111/j.1742-4658.2010.07889.x

Article  CAS  PubMed  Google Scholar 

Ross JA, McGonigle P, Van Bockstaele EJ (2015) Locus coeruleus, norepinephrine and Aβ peptides in Alzheimer’s disease. Neurobiol Stress 2:73–84. https://doi.org/10.1016/j.ynstr.2015.09.002

Article  PubMed  PubMed Central  Google Scholar 

Toneff T, Funkelstein L, Mosier C, Abagyan A, Ziegler M, Hook V (2013) Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters. Peptides 46:126–135. https://doi.org/10.1016/j.peptides.2013.04.020

Article  CAS  PubMed  Google Scholar 

Huong VT, Shimanouchi T, Shimauchi N, Yagi H, Umakoshi H, Goto Y, Kuboi R (2010) Catechol derivatives inhibit the fibril formation of amyloid-β peptides. J Biosci Bioeng 109:629–634. https://doi.org/10.1016/j.jbiosc.2009.11.010

Article  CAS  PubMed  Google Scholar 

Liu X, Ye K, Weinshenker D (2015) Norepinephrine protects against Amyloid-β toxicity via TrkB. J Alzheimers Dis 44:251–260. https://doi.org/10.3233/JAD-141062

Article  CAS  PubMed  PubMed Central  Google Scholar 

McNamara CG, Dupret D (2017) Two sources of dopamine for the hippocampus. Trends Neurosci 40:383–384. https://doi.org/10.1016/j.tins.2017.05.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guzmán-Ramos K, Moreno-Castilla P, Castro-Cruz M, McGaugh JL, Martínez-Coria H, LaFerla FM, Bermúdez-Rattoni F (2012) Restoration of dopamine release deficits during object recognition memory acquisition attenuates cognitive impairment in a triple transgenic mice model of Alzheimer’s disease. Learn Mem 19:453–460. https://doi.org/10.1101/lm.026070.112

Article  CAS  PubMed  Google Scholar 

Himeno E, Ohyagi Y, Ma L, Nakamura N, Miyoshi K, Sakae N, Motomura K, Soejima N, Yamasaki R, Hashimoto T, Tabira T, LaFerla M, F, Kira J, (2011) Apomorphine treatment in Alzheimer mice promoting amyloid-β degradation. Ann Neurol 69:248–256. https://doi.org/10.1002/ana.22319

Article  CAS  PubMed  Google Scholar 

Nam E, Derrick JS, Lee S, Kang J, Han J, Lee SJC, Chung SW, Lim MH (2018) Regulatory activities of dopamine and its derivatives toward metal-free and metal-induced amyloid-β aggregation, oxidative stress, and inflammation in Alzheimer’s Disease. ACS Chem Neurosci 9:2655–2666. https://doi.org/10.1021/acschemneuro.8b00122

Article  CAS  PubMed  Google Scholar 

Butterfield DA, Boyd-Kimball D (2018) Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer’s Disease. J Alzheimers Dis 62:1345–1367. https://doi.org/10.3233/JAD-170543

Article  CAS  PubMed  PubMed Central  Google Scholar 

Enache TA, Oliveira-Brett AM (2017) Alzheimer’s disease amyloid beta peptides in vitro electrochemical oxidation. Bioelectrochemistry 114:13–23. https://doi.org/10.1016/j.bioelechem.2016.11.003

Article  CAS  PubMed  Google Scholar 

Al-Hilaly YK, Williams TL, Stewart-Parker M, Ford L, Skaria E, Cole M, Bucher WG, Morris KL, Sada AA, Thorpe JR, Serpell LC (2013) A central role for dityrosine crosslinking of Amyloid-β in Alzheimer’s disease. Acta Neuropathol Commun 1:83. https://doi.org/10.1186/2051-5960-1-83

Article  PubMed  PubMed Central  Google Scholar 

Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 18:8126–8132. https://doi.org/10.1523/JNEUROSCI.18-20-08126.1998

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maina MB, Al-Hilaly YK, Serpell LC (2023) Dityrosine cross-linking and its potential roles in Alzheimer’s disease. Front Neurosci 17:1132670. https://doi.org/10.3389/fnins.2023.1132670

Article  PubMed  PubMed Central  Google Scholar 

Vázquez de la Torre A, Gay M, Vilaprinyó-Pascual S, Mazzucato R, Serra-Batiste M, Vilaseca M, Carulla N (2018) Direct evidence of the presence of cross-linked Aβ dimers in the brains of Alzheimer’s Disease patients. Anal Chem 90:4552–4560. https://doi.org/10.1021/acs.analchem.7b04936

Article  CAS 

Comments (0)

No login
gif