Armstrong RA (2006) Plaques and tangles and the pathogenesis of Alzheimer’s disease. Folia Neuropathol 44:1–11
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464. https://doi.org/10.1016/j.redox.2017.10.014
Article CAS PubMed Google Scholar
Galeazzi L, Ronchi P, Franceschi C, Giunta S (1999) In vitro peroxidase oxidation induces stable dimers of β-amyloid (1–42) through dityrosine bridge formation. Amyloid 6:7–13. https://doi.org/10.3109/13506129908993282
Article CAS PubMed Google Scholar
Canevari L, Abramov AY, Duchen MR (2004) Toxicity of amyloid β peptide: tales of calcium, mitochondria, and oxidative stress. Neurochem Res 29:637–650. https://doi.org/10.1023/B:NERE.0000014834.06405.af
Article CAS PubMed Google Scholar
Butterfield DA (1997) β-amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Chem Res Toxicol 10:495–506. https://doi.org/10.1021/tx960130e
Article CAS PubMed Google Scholar
Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Review: Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130:184–208. https://doi.org/10.1006/jsbi.2000.4274
Article CAS PubMed Google Scholar
Hensley K, Butterfieldld DA, Hall N, Cole P, Subramaniam R, Mark R, Mattson MP, Markesbery WR, Harris ME, Aksenov M, Aksenova M, Wu JF, Carney JM (1996) Reactive oxygen species as causal agents in the neurotoxicity of the Alzheimer’s Disease-Associated amyloid beta peptide. Ann N Y Acad Sci 786:120–134. https://doi.org/10.1111/j.1749-6632.1996.tb39057.x
Article CAS PubMed Google Scholar
Hardy JA, Higgins GA (1992) Alzheimer’s Disease: the amyloid cascade hypothesis. Science 256:184–185. https://doi.org/10.1126/science.1566067
Article CAS PubMed Google Scholar
Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448
Article CAS PubMed PubMed Central Google Scholar
Cline EN, Bicca MA, Viola KL, Klein WL (2018) The Amyloid-β oligomer hypothesis: beginning of the third decade. J Alzheimers Dis 64:S567–S610. https://doi.org/10.3233/JAD-179941
Article CAS PubMed PubMed Central Google Scholar
Bemporad F, Chiti F (2012) Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem Biol 19:315–327. https://doi.org/10.1016/j.chembiol.2012.02.003
Article CAS PubMed Google Scholar
Bayer, (2010) Intracellular accumulation of amyloid-beta—a predictor for synaptic dysfunction and neuron loss in Alzheimer’s disease. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2010.00008
Necula M, Kayed R, Milton S, Glabe CG (2007) Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. J Biol Chem 282:10311–10324. https://doi.org/10.1074/jbc.M608207200
Article CAS PubMed Google Scholar
Todd K, Ghiso J, Rostagno A (2016) Oxidative stress and mitochondria-mediated cell death mechanisms triggered by the familial Danish dementia ADan amyloid. Neurobiol Dis 85:130–143. https://doi.org/10.1016/j.nbd.2015.10.003
Article CAS PubMed Google Scholar
Fändrich M (2012) Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity. J Mol Biol 421:427–440. https://doi.org/10.1016/j.jmb.2012.01.006
Article CAS PubMed Google Scholar
Ferreira ST, Klein WL (2011) The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem 96:529–543. https://doi.org/10.1016/j.nlm.2011.08.003
Article CAS PubMed PubMed Central Google Scholar
Sakono M, Zako T (2010) Amyloid oligomers: formation and toxicity of Aβ oligomers: Formation of toxic Aβ oligomers. FEBS J 277:1348–1358. https://doi.org/10.1111/j.1742-4658.2010.07568.x
Article CAS PubMed Google Scholar
Stefani M (2010) Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity: Amyloid oligomer/fibril cytotoxicity. FEBS J 277:4602–4613. https://doi.org/10.1111/j.1742-4658.2010.07889.x
Article CAS PubMed Google Scholar
Ross JA, McGonigle P, Van Bockstaele EJ (2015) Locus coeruleus, norepinephrine and Aβ peptides in Alzheimer’s disease. Neurobiol Stress 2:73–84. https://doi.org/10.1016/j.ynstr.2015.09.002
Article PubMed PubMed Central Google Scholar
Toneff T, Funkelstein L, Mosier C, Abagyan A, Ziegler M, Hook V (2013) Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters. Peptides 46:126–135. https://doi.org/10.1016/j.peptides.2013.04.020
Article CAS PubMed Google Scholar
Huong VT, Shimanouchi T, Shimauchi N, Yagi H, Umakoshi H, Goto Y, Kuboi R (2010) Catechol derivatives inhibit the fibril formation of amyloid-β peptides. J Biosci Bioeng 109:629–634. https://doi.org/10.1016/j.jbiosc.2009.11.010
Article CAS PubMed Google Scholar
Liu X, Ye K, Weinshenker D (2015) Norepinephrine protects against Amyloid-β toxicity via TrkB. J Alzheimers Dis 44:251–260. https://doi.org/10.3233/JAD-141062
Article CAS PubMed PubMed Central Google Scholar
McNamara CG, Dupret D (2017) Two sources of dopamine for the hippocampus. Trends Neurosci 40:383–384. https://doi.org/10.1016/j.tins.2017.05.005
Article CAS PubMed PubMed Central Google Scholar
Guzmán-Ramos K, Moreno-Castilla P, Castro-Cruz M, McGaugh JL, Martínez-Coria H, LaFerla FM, Bermúdez-Rattoni F (2012) Restoration of dopamine release deficits during object recognition memory acquisition attenuates cognitive impairment in a triple transgenic mice model of Alzheimer’s disease. Learn Mem 19:453–460. https://doi.org/10.1101/lm.026070.112
Article CAS PubMed Google Scholar
Himeno E, Ohyagi Y, Ma L, Nakamura N, Miyoshi K, Sakae N, Motomura K, Soejima N, Yamasaki R, Hashimoto T, Tabira T, LaFerla M, F, Kira J, (2011) Apomorphine treatment in Alzheimer mice promoting amyloid-β degradation. Ann Neurol 69:248–256. https://doi.org/10.1002/ana.22319
Article CAS PubMed Google Scholar
Nam E, Derrick JS, Lee S, Kang J, Han J, Lee SJC, Chung SW, Lim MH (2018) Regulatory activities of dopamine and its derivatives toward metal-free and metal-induced amyloid-β aggregation, oxidative stress, and inflammation in Alzheimer’s Disease. ACS Chem Neurosci 9:2655–2666. https://doi.org/10.1021/acschemneuro.8b00122
Article CAS PubMed Google Scholar
Butterfield DA, Boyd-Kimball D (2018) Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer’s Disease. J Alzheimers Dis 62:1345–1367. https://doi.org/10.3233/JAD-170543
Article CAS PubMed PubMed Central Google Scholar
Enache TA, Oliveira-Brett AM (2017) Alzheimer’s disease amyloid beta peptides in vitro electrochemical oxidation. Bioelectrochemistry 114:13–23. https://doi.org/10.1016/j.bioelechem.2016.11.003
Article CAS PubMed Google Scholar
Al-Hilaly YK, Williams TL, Stewart-Parker M, Ford L, Skaria E, Cole M, Bucher WG, Morris KL, Sada AA, Thorpe JR, Serpell LC (2013) A central role for dityrosine crosslinking of Amyloid-β in Alzheimer’s disease. Acta Neuropathol Commun 1:83. https://doi.org/10.1186/2051-5960-1-83
Article PubMed PubMed Central Google Scholar
Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 18:8126–8132. https://doi.org/10.1523/JNEUROSCI.18-20-08126.1998
Article CAS PubMed PubMed Central Google Scholar
Maina MB, Al-Hilaly YK, Serpell LC (2023) Dityrosine cross-linking and its potential roles in Alzheimer’s disease. Front Neurosci 17:1132670. https://doi.org/10.3389/fnins.2023.1132670
Article PubMed PubMed Central Google Scholar
Vázquez de la Torre A, Gay M, Vilaprinyó-Pascual S, Mazzucato R, Serra-Batiste M, Vilaseca M, Carulla N (2018) Direct evidence of the presence of cross-linked Aβ dimers in the brains of Alzheimer’s Disease patients. Anal Chem 90:4552–4560. https://doi.org/10.1021/acs.analchem.7b04936
Comments (0)