Tolosa E, Garrido A, Scholz SW, Poewe W (2021) Challenges in the diagnosis of Parkinson’s Disease. Lancet Neurol 20:385–397. https://doi.org/10.1016/S1474-4422(21)00030-2
Article CAS PubMed PubMed Central Google Scholar
Weintraub D, Aarsland D, Chaudhuri KR et al (2022) The neuropsychiatry of Parkinson’s Disease: advances and challenges. Lancet Neurol 21:89–102. https://doi.org/10.1016/S1474-4422(21)00330-6
Article PubMed PubMed Central Google Scholar
Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397:2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X
Article CAS PubMed Google Scholar
Auguste YSS, Ferro A, Kahng JA et al (2022) Oligodendrocyte precursor cells engulf synapses during circuit remodeling in mice. Nat Neurosci 25:1273–1278. https://doi.org/10.1038/s41593-022-01170-x
Article CAS PubMed PubMed Central Google Scholar
Azevedo C, Teku G, Pomeshchik Y et al (2022) Parkinson’s disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced changes in maturation and immune reactive properties. Proc Natl Acad Sci USA 119:e2111405119. https://doi.org/10.1073/pnas.2111405119
Article CAS PubMed PubMed Central Google Scholar
Chamberlain KA, Huang N, Xie Y et al (2021) Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2. Neuron 109:3456-3472e8. https://doi.org/10.1016/j.neuron.2021.08.011
Article CAS PubMed PubMed Central Google Scholar
Cheli VT, Correale J, Paez PM, Pasquini JM (2020) Iron metabolism in oligodendrocytes and astrocytes, implications for myelination and remyelination. ASN Neuro 12:1759091420962681. https://doi.org/10.1177/1759091420962681
Article CAS PubMed PubMed Central Google Scholar
Annese V, Barcia C, Ros-Bernal F et al (2013) Evidence of oligodendrogliosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Neuropathol Appl Neurobiol 39:132–143. https://doi.org/10.1111/j.1365-2990.2012.01271.x
Article CAS PubMed Google Scholar
Bryois J, Skene NG, Hansen TF et al (2020) Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease. Nat Genet 52:482–493. https://doi.org/10.1038/s41588-020-0610-9
Article CAS PubMed PubMed Central Google Scholar
Wang GS, Eriksson LC, Xia L et al (1999) Dietary iron overload inhibits carbon tetrachloride-induced promotion in chemical hepatocarcinogenesis: effects on cell proliferation, apoptosis, and antioxidation. J Hepatol 30:689–698. https://doi.org/10.1016/s0168-8278(99)80201-3
Article CAS PubMed Google Scholar
Masaldan S, Bush AI, Devos D et al (2019) Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med 133:221–233. https://doi.org/10.1016/j.freeradbiomed.2018.09.033
Article CAS PubMed Google Scholar
Sofic E, Riederer P, Heinsen H et al (1988) Increased iron (III) and total iron content in post mortem substantia nigra of Parkinsonian brain. J Neural Transm 74:199–205. https://doi.org/10.1007/BF01244786
Article CAS PubMed Google Scholar
Reimão S, Ferreira S, Nunes RG et al (2016) Magnetic resonance correlation of iron content with neuromelanin in the substantia nigra of early-stage Parkinson’s Disease. Eur J Neurol 23:368–374. https://doi.org/10.1111/ene.12838
Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810. https://doi.org/10.1074/jbc.M008922200
Article CAS PubMed Google Scholar
Wang S-M, Fu L-J, Duan X-L et al (2010) Role of hepcidin in murine brain iron metabolism. Cell Mol Life Sci 67:123–133. https://doi.org/10.1007/s00018-009-0167-3
Article CAS PubMed Google Scholar
Ganz T (2005) Cellular iron: ferroportin is the only way out. Cell Metab 1:155–157. https://doi.org/10.1016/j.cmet.2005.02.005
Article CAS PubMed Google Scholar
Nemeth E, Tuttle MS, Powelson J et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093. https://doi.org/10.1126/science.1104742
Article CAS PubMed Google Scholar
Anderson SA, Nizzi CP, Chang Y-I et al (2013) The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab 17:282–290. https://doi.org/10.1016/j.cmet.2013.01.007
Article CAS PubMed PubMed Central Google Scholar
Meyron-Holtz EG, Ghosh MC, Rouault TA (2004) Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science 306:2087–2090. https://doi.org/10.1126/science.1103786
Article CAS PubMed Google Scholar
Dev S, Kumari S, Singh N et al (2015) Role of extracellular hydrogen peroxide in regulation of iron homeostasis genes in neuronal cells: implication in iron accumulation. Free Radic Biol Med 86:78–89. https://doi.org/10.1016/j.freeradbiomed.2015.05.025
Article CAS PubMed Google Scholar
Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of mammalian iron metabolism. Cell 142:24–38. https://doi.org/10.1016/j.cell.2010.06.028
Article CAS PubMed Google Scholar
Cheli VT, Santiago González DA, Wan Q et al (2021) H-ferritin expression in astrocytes is necessary for proper oligodendrocyte development and myelination. Glia 69:2981–2998. https://doi.org/10.1002/glia.24083
Article CAS PubMed PubMed Central Google Scholar
Chiou B, Neely EB, Mcdevitt DS et al (2020) Transferrin and H-ferritin involvement in brain iron acquisition during postnatal development: impact of sex and genotype. J Neurochem 152:381–396. https://doi.org/10.1111/jnc.14834
Article CAS PubMed Google Scholar
You Y, Muraoka S, Jedrychowski MP et al (2022) Human neural cell type-specific extracellular vesicle proteome defines disease-related molecules associated with activated astrocytes in Alzheimer’s disease brain. J Extracell Vesicles 11:e12183. https://doi.org/10.1002/jev2.12183
Article CAS PubMed PubMed Central Google Scholar
Sun M-F, Zhu Y-L, Zhou Z-L et al (2018) Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav Immun 70:48–60. https://doi.org/10.1016/j.bbi.2018.02.005
Article CAS PubMed Google Scholar
Liu T-W, Chen C-M, Chang K-H (2022) Biomarker of neuroinflammation in Parkinson’s disease. Int J Mol Sci 23:4148. https://doi.org/10.3390/ijms23084148
Article CAS PubMed PubMed Central Google Scholar
Bottigliengo D, Foco L, Seibler P et al (2022) A mendelian randomization study investigating the causal role of inflammation on Parkinson’s disease. Brain 145:3444–3453. https://doi.org/10.1093/brain/awac193
Article PubMed PubMed Central Google Scholar
Sterling JK, Kam T-I, Guttha S et al (2022) Interleukin-6 triggers toxic neuronal iron sequestration in response to pathological α-synuclein. Cell Rep 38:110358. https://doi.org/10.1016/j.celrep.2022.110358
Article CAS PubMed PubMed Central Google Scholar
Miao W, Zhao Y, Huang Y et al (2020) IL-13 ameliorates neuroinflammation and promotes functional recovery after traumatic brain injury. J Immunol 204:1486–1498. https://doi.org/10.4049/jimmunol.1900909
Article CAS PubMed Google Scholar
McNamara NB, Munro DAD, Bestard-Cuche N et al (2023) Microglia regulate central nervous system myelin growth and integrity. Nature 613:120–129. https://doi.org/10.1038/s41586-022-05534-y
Article CAS PubMed Google Scholar
Li Q, Lan X, Han X et al (2021) Microglia-derived interleukin-10 accelerates post-intracerebral hemorrhage hematoma clearance by regulating CD36. Brain Behav Immun 94:437–457. https://doi.org/10.1016/j.bbi.2021.02.001
Article CAS PubMed Google Scholar
Bajbouj K, Shafarin J, Muhammad JS et al (2020) Estrogen signaling differentially alters iron metabolism in monocytes in an interleukin 6-dependent manner. Immunobiology 225:151995. https://doi.org/10.1016/j.imbio.2020.151995
Comments (0)