Contrasting Iron Metabolism in Undifferentiated Versus Differentiated MO3.13 Oligodendrocytes via IL-1β-Induced Iron Regulatory Protein 1

Tolosa E, Garrido A, Scholz SW, Poewe W (2021) Challenges in the diagnosis of Parkinson’s Disease. Lancet Neurol 20:385–397. https://doi.org/10.1016/S1474-4422(21)00030-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weintraub D, Aarsland D, Chaudhuri KR et al (2022) The neuropsychiatry of Parkinson’s Disease: advances and challenges. Lancet Neurol 21:89–102. https://doi.org/10.1016/S1474-4422(21)00330-6

Article  PubMed  PubMed Central  Google Scholar 

Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397:2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X

Article  CAS  PubMed  Google Scholar 

Auguste YSS, Ferro A, Kahng JA et al (2022) Oligodendrocyte precursor cells engulf synapses during circuit remodeling in mice. Nat Neurosci 25:1273–1278. https://doi.org/10.1038/s41593-022-01170-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azevedo C, Teku G, Pomeshchik Y et al (2022) Parkinson’s disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced changes in maturation and immune reactive properties. Proc Natl Acad Sci USA 119:e2111405119. https://doi.org/10.1073/pnas.2111405119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chamberlain KA, Huang N, Xie Y et al (2021) Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2. Neuron 109:3456-3472e8. https://doi.org/10.1016/j.neuron.2021.08.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheli VT, Correale J, Paez PM, Pasquini JM (2020) Iron metabolism in oligodendrocytes and astrocytes, implications for myelination and remyelination. ASN Neuro 12:1759091420962681. https://doi.org/10.1177/1759091420962681

Article  CAS  PubMed  PubMed Central  Google Scholar 

Annese V, Barcia C, Ros-Bernal F et al (2013) Evidence of oligodendrogliosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Neuropathol Appl Neurobiol 39:132–143. https://doi.org/10.1111/j.1365-2990.2012.01271.x

Article  CAS  PubMed  Google Scholar 

Bryois J, Skene NG, Hansen TF et al (2020) Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease. Nat Genet 52:482–493. https://doi.org/10.1038/s41588-020-0610-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang GS, Eriksson LC, Xia L et al (1999) Dietary iron overload inhibits carbon tetrachloride-induced promotion in chemical hepatocarcinogenesis: effects on cell proliferation, apoptosis, and antioxidation. J Hepatol 30:689–698. https://doi.org/10.1016/s0168-8278(99)80201-3

Article  CAS  PubMed  Google Scholar 

Masaldan S, Bush AI, Devos D et al (2019) Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med 133:221–233. https://doi.org/10.1016/j.freeradbiomed.2018.09.033

Article  CAS  PubMed  Google Scholar 

Sofic E, Riederer P, Heinsen H et al (1988) Increased iron (III) and total iron content in post mortem substantia nigra of Parkinsonian brain. J Neural Transm 74:199–205. https://doi.org/10.1007/BF01244786

Article  CAS  PubMed  Google Scholar 

Reimão S, Ferreira S, Nunes RG et al (2016) Magnetic resonance correlation of iron content with neuromelanin in the substantia nigra of early-stage Parkinson’s Disease. Eur J Neurol 23:368–374. https://doi.org/10.1111/ene.12838

Article  PubMed  Google Scholar 

Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810. https://doi.org/10.1074/jbc.M008922200

Article  CAS  PubMed  Google Scholar 

Wang S-M, Fu L-J, Duan X-L et al (2010) Role of hepcidin in murine brain iron metabolism. Cell Mol Life Sci 67:123–133. https://doi.org/10.1007/s00018-009-0167-3

Article  CAS  PubMed  Google Scholar 

Ganz T (2005) Cellular iron: ferroportin is the only way out. Cell Metab 1:155–157. https://doi.org/10.1016/j.cmet.2005.02.005

Article  CAS  PubMed  Google Scholar 

Nemeth E, Tuttle MS, Powelson J et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093. https://doi.org/10.1126/science.1104742

Article  CAS  PubMed  Google Scholar 

Anderson SA, Nizzi CP, Chang Y-I et al (2013) The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab 17:282–290. https://doi.org/10.1016/j.cmet.2013.01.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyron-Holtz EG, Ghosh MC, Rouault TA (2004) Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science 306:2087–2090. https://doi.org/10.1126/science.1103786

Article  CAS  PubMed  Google Scholar 

Dev S, Kumari S, Singh N et al (2015) Role of extracellular hydrogen peroxide in regulation of iron homeostasis genes in neuronal cells: implication in iron accumulation. Free Radic Biol Med 86:78–89. https://doi.org/10.1016/j.freeradbiomed.2015.05.025

Article  CAS  PubMed  Google Scholar 

Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of mammalian iron metabolism. Cell 142:24–38. https://doi.org/10.1016/j.cell.2010.06.028

Article  CAS  PubMed  Google Scholar 

Cheli VT, Santiago González DA, Wan Q et al (2021) H-ferritin expression in astrocytes is necessary for proper oligodendrocyte development and myelination. Glia 69:2981–2998. https://doi.org/10.1002/glia.24083

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiou B, Neely EB, Mcdevitt DS et al (2020) Transferrin and H-ferritin involvement in brain iron acquisition during postnatal development: impact of sex and genotype. J Neurochem 152:381–396. https://doi.org/10.1111/jnc.14834

Article  CAS  PubMed  Google Scholar 

You Y, Muraoka S, Jedrychowski MP et al (2022) Human neural cell type-specific extracellular vesicle proteome defines disease-related molecules associated with activated astrocytes in Alzheimer’s disease brain. J Extracell Vesicles 11:e12183. https://doi.org/10.1002/jev2.12183

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun M-F, Zhu Y-L, Zhou Z-L et al (2018) Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav Immun 70:48–60. https://doi.org/10.1016/j.bbi.2018.02.005

Article  CAS  PubMed  Google Scholar 

Liu T-W, Chen C-M, Chang K-H (2022) Biomarker of neuroinflammation in Parkinson’s disease. Int J Mol Sci 23:4148. https://doi.org/10.3390/ijms23084148

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bottigliengo D, Foco L, Seibler P et al (2022) A mendelian randomization study investigating the causal role of inflammation on Parkinson’s disease. Brain 145:3444–3453. https://doi.org/10.1093/brain/awac193

Article  PubMed  PubMed Central  Google Scholar 

Sterling JK, Kam T-I, Guttha S et al (2022) Interleukin-6 triggers toxic neuronal iron sequestration in response to pathological α-synuclein. Cell Rep 38:110358. https://doi.org/10.1016/j.celrep.2022.110358

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miao W, Zhao Y, Huang Y et al (2020) IL-13 ameliorates neuroinflammation and promotes functional recovery after traumatic brain injury. J Immunol 204:1486–1498. https://doi.org/10.4049/jimmunol.1900909

Article  CAS  PubMed  Google Scholar 

McNamara NB, Munro DAD, Bestard-Cuche N et al (2023) Microglia regulate central nervous system myelin growth and integrity. Nature 613:120–129. https://doi.org/10.1038/s41586-022-05534-y

Article  CAS  PubMed  Google Scholar 

Li Q, Lan X, Han X et al (2021) Microglia-derived interleukin-10 accelerates post-intracerebral hemorrhage hematoma clearance by regulating CD36. Brain Behav Immun 94:437–457. https://doi.org/10.1016/j.bbi.2021.02.001

Article  CAS  PubMed  Google Scholar 

Bajbouj K, Shafarin J, Muhammad JS et al (2020) Estrogen signaling differentially alters iron metabolism in monocytes in an interleukin 6-dependent manner. Immunobiology 225:151995. https://doi.org/10.1016/j.imbio.2020.151995

Article  CAS  PubMed 

Comments (0)

No login
gif