TBI-related deaths (2019) Centers for Disease Control and Prevention, https://www.cdc.gov/traumaticbraininjury/data/index.html. Accessed 15 April 2020,
GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators (2019) Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Neurol 18(1):56–87. https://doi.org/10.1016/S1474-4422(18)30415-0
Lee HF, Chen CH, Chang CF (2020) A preclinical controlled cortical impact model for traumatic hemorrhage contusion and neuroinflammation. J Vis Exp 16010.3791/61393
Omer M, Posti JP, Gissler M, Merikukka M, Bärnighausen T, Wilson ML (2022) Birth order and pediatric traumatic brain injury. Sci Rep 12(1):14451. https://doi.org/10.1038/s41598-022-18742-3
Article CAS PubMed PubMed Central Google Scholar
Narouiepour A, Ebrahimzadeh-Bideskan A, Rajabzadeh G, Gorji A, Negah SS (2022) Neural stem cell therapy in conjunction with curcumin loaded in niosomal nanoparticles enhanced recovery from traumatic brain injury. Sci Rep 12(1):3572. https://doi.org/10.1038/s41598-022-07367-1
Article CAS PubMed PubMed Central Google Scholar
Hegdekar N, Lipinski MM, Sarkar C (2021) N-Acetyl-L-leucine improves functional recovery and attenuates cortical cell death and neuroinflammation after traumatic brain injury in mice. Sci Rep 11(1):9249. https://doi.org/10.1038/s41598-021-88693-8
Article CAS PubMed PubMed Central Google Scholar
Nikolian VC, Dekker SE, Bambakidis T, Higgins GA, Dennahy IS, Georgoff PE, Williams AM, Andjelkovic AV, Alam HB (2018) Improvement of blood-brain Barrier Integrity in Traumatic Brain Injury and hemorrhagic shock following treatment with Valproic Acid and Fresh Frozen plasma. Crit Care Med 46(1):e59–e66. https://doi.org/10.1097/CCM.0000000000002800
Jahanbazi Jahan-Abad A, Sahab Negah S, Hosseini Ravandi H, Ghasemi S, Borhani-Haghighi M, Stummer W, Gorji A, Khaleghi Ghadiri M (2018) Human neural Stem/Progenitor cells derived from epileptic human brain in a self-assembling peptide Nanoscaffold Improve Traumatic Brain Injury in rats. Mol Neurobiol 55(12):9122–9138. https://doi.org/10.1007/s12035-018-1050-8
Article CAS PubMed Google Scholar
Luo ML, Pan L, Wang L, Wang HY, Li S, Long ZY, Zeng L, Liu Y (2019) Transplantation of NSCs promotes the recovery of cognitive functions by regulating neurotransmitters in rats with traumatic brain Injury. Neurochem Res 44(12):2765–2775. https://doi.org/10.1007/s11064-019-02897-z
Article CAS PubMed Google Scholar
Zhang Y, Zhang Y, Chopp M, Zhang ZG, Mahmood A, Xiong Y (2020) Mesenchymal stem cell-derived Exosomes improve functional recovery in rats after traumatic Brain Injury: a dose-response and therapeutic window study. Neurorehabil Neural Repair 34(7):616–626. https://doi.org/10.1177/1545968320926164
Article PubMed PubMed Central Google Scholar
Lin SJ, Cao LX, Cheng SB, Dai QF, Lin JH, Pu L, Chen WH, Zhang YJ, Chen SL, Zhang YM (2018) Effect of acupuncture on the TLR2/4-NF-κB signalling pathway in a rat model of traumatic brain injury. Acupunct Med 36(4):247–253. https://doi.org/10.1136/acupmed-2017-011472
Article PubMed PubMed Central Google Scholar
Begemann M, Leon M, van der Horn HJ, van der Naalt J, Sommer I (2020) Drugs with anti-inflammatory effects to improve outcome of traumatic brain injury: a meta-analysis. Sci Rep 10(1):16179. https://doi.org/10.1038/s41598-020-73227-5
Article CAS PubMed PubMed Central Google Scholar
Oliveira SR, Dionísio PA, Brito H, Franco L, Rodrigues CAB, Guedes RC, Afonso CAM, Amaral JD, Rodrigues CMP (2018) Phenotypic screening identifies a new oxazolone inhibitor of necroptosis and neuroinflammation. Cell Death Discov 4:10. https://doi.org/10.1038/s41420-018-0067-0
Article CAS PubMed Google Scholar
He S, Wang X (2018) RIP kinases as modulators of inflammation and immunity. Nat Immunol 19(9):912–922. https://doi.org/10.1038/s41590-018-0188-x
Article CAS PubMed Google Scholar
Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, Qi D, Lin C, Tong R, Wang Y (2019) RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (review). Int J Mol Med 44(3):771–786. https://doi.org/10.3892/ijmm.2019.4244
Article CAS PubMed PubMed Central Google Scholar
Khan N, Lawlor KE, Murphy JM, Vince JE (2014) More to life than death: molecular determinants of necroptotic and non-necroptotic RIP3 kinase signaling. Curr Opin Immunol 26:76–89. https://doi.org/10.1016/j.coi.2013.10.017
Article CAS PubMed Google Scholar
Jayakumar A, Bothwell ALM (2019) RIPK3-Induced inflammation by I-MDSCs promotes intestinal tumors. Cancer Res 79(7):1587–1599. https://doi.org/10.1158/0008-5472.CAN-18-2153
Article CAS PubMed PubMed Central Google Scholar
Liu ZM, Chen QX, Chen ZB, Tian DF, Li MC, Wang JM, Wang L, Liu BH, Zhang SQ, Li F, Ye H, Zhou L (2018) RIP3 deficiency protects against traumatic brain injury (TBI) through suppressing oxidative stress, inflammation and apoptosis: dependent on AMPK pathway. Biochem Biophys Res Commun 499(2):112–119. https://doi.org/10.1016/j.bbrc.2018.02.150
Article CAS PubMed Google Scholar
Zhang Y, Li M, Li X, Zhang H, Wang L, Wu X, Zhang H, Luo Y (2020) Catalytically inactive RIP1 and RIP3 deficiency protect against acute ischemic stroke by inhibiting necroptosis and neuroinflammation. Cell Death Dis 11(7):565. https://doi.org/10.1038/s41419-020-02770-w
Article CAS PubMed PubMed Central Google Scholar
Guo C, Fu R, Zhou M, Wang S, Huang Y, Hu H, Zhao J, Gaskin F, Yang N, Fu SM (2019) Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation. J Autoimmun 103:102286. https://doi.org/10.1016/j.jaut.2019.05.014
Article CAS PubMed PubMed Central Google Scholar
Ma F, Zhu Y, Chang L, Gong J, Luo Y, Dai J, Lu H (2022) Hydrogen sulfide protects against ischemic heart failure by inhibiting RIP1/RIP3/MLKL-mediated necroptosis. Physiol Res 71(6):771–781. https://doi.org/10.33549/physiolres.934905
Article CAS PubMed PubMed Central Google Scholar
Duan C, Xu X, Lu X, Wang L, Lu Z (2022) RIP3 knockdown inhibits necroptosis of human intestinal epithelial cells via TLR4/MyD88/NF-κB signaling and ameliorates murine colitis. BMC Gastroenterol 22(1):137. https://doi.org/10.1186/s12876-022-02208-x
Article CAS PubMed PubMed Central Google Scholar
Dionísio PA, Oliveira SR, Gaspar MM, Gama MJ, Castro-Caldas M, Amaral JD, Rodrigues CMP (2019) Ablation of RIP3 protects from dopaminergic neurodegeneration in experimental Parkinson’s disease. Cell Death Dis 10(11):840. https://doi.org/10.1038/s41419-019-2078-z
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Song M, Zhou P, Wang J, Zheng J, Xu H (2021) TNFAIP3-upregulated RIP3 exacerbates acute pancreatitis via activating NLRP3 inflammasome. Int Immunopharmacol 100:108067. https://doi.org/10.1016/j.intimp.2021.108067
Article CAS PubMed Google Scholar
Chen D, Gregory AD, Li X, Wei J, Burton CL, Gibson G, Scott SJ, St Croix CM, Zhang Y, Shapiro SD (2021) RIP3-dependent necroptosis contributes to the pathogenesis of chronic obstructive pulmonary disease. JCI Insight 6(12):e144689. https://doi.org/10.1172/jci.insight.144689
Article PubMed PubMed Central Google Scholar
Wei S, Zhou H, Wang Q, Zhou S, Li C, Liu R, Qiu J, Shi C, Lu L (2019) RIP3 deficiency alleviates liver fibrosis by inhibiting ROCK1-TLR4-NF-κB pathway in macrophages. FASEB J 33(10):11180–11193. https://doi.org/10.1096/fj.201900752R
Article CAS PubMed Google Scholar
Ma D, Wang X, Liu X, Li Z, Liu J, Cao J, Wang G, Guo Y, Zhao S (2022) Macrophage infiltration initiates RIP3/MLKL-Dependent necroptosis in Paclitaxel-Induced Neuropathic Pain. Mediators Inflamm 2022:1567210. https://doi.org/10.1155/2022/1567210
Article CAS PubMed PubMed Central Google Scholar
Liu S, Joshi K, Denning MF, Zhang J (2021) RIPK3 signaling and its role in the pathogenesis of cancers. Cell Mol Life Sci 78(23):7199–7217. https://doi.org/10.1007/s00018-021-03947-y
Article CAS PubMed PubMed Central Google Scholar
Zhang H, Wu X, Li X, Li M, Li F, Wang L, Zhang X, Zhang Y, Luo Y, Wang H, Jiang Y, Zhang H (2020) Crucial roles of the RIP homotypic Interaction Motifs of RIPK3 in RIPK1-Dependent cell death and lymphoproliferative disease. Cell Rep 31(7):107650. https://doi.org/10.1016/j.celrep.2020.107650
Article CAS PubMed Google Scholar
Weber K, Roelandt R, Bruggeman I, Estornes Y, Vandenabeele P (2018) Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis. Commun Biol 1:6. https://doi.org/10.1038/s42003-017-0007-1
Article PubMed PubMed Central Google Scholar
Kasof GM, Prosser JC, Liu D, Lorenzi MV, Gomes BC (2000) The RIP-like kinase, RIP3, induces apoptosis and NF-kappaB nuclear translocation and localizes to mitochondria. FEBS Lett 473(3):285–291. https://doi.org/10.1016/s0014-5793(00)01473-3
Article CAS PubMed Google Scholar
Hanna-Addams S, Liu S, Liu H, Chen S, Wang Z, CK1α (2020) CK1δ, and CK1ε are necrosome components which phosphorylate serine 227 of human RIPK3 to activate necroptosis. Proc Natl Acad Sci U S A 117(4):1962–1970. https://doi.org/10.1073/pnas.1917112117
Comments (0)