Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738. https://doi.org/10.1016/j.cmet.2011.08.016
Article CAS PubMed Google Scholar
Fernández-González I, Galea E (2022) Astrocyte strategies in the energy-efficient brain. Essays Biochem 67:3–16. https://doi.org/10.1042/EBC20220077
Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762–777. https://doi.org/10.1016/j.neuron.2012.08.019
Article CAS PubMed Google Scholar
Verkhratsky A, Arranz AM, Ciuba K, Pękowska A (2018) Evolution of neuroglia. Ann N Y Acad Sci 1518:120–130. https://doi.org/10.1111/nyas.14917
Beard E, Lengacher S, Dias S et al (2022) Astrocytes as key regulators of brain energy metabolism: new therapeutic perspectives. Front Physiol 12:825816. https://doi.org/10.3389/fphys.2021.825816
Article PubMed PubMed Central Google Scholar
Bonvento G, Bolaños JP (2021) Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab 33:1546–1564. https://doi.org/10.1016/j.cmet.2021.07.006
Article CAS PubMed Google Scholar
Silver IA, Erecińska M (1997) Energetic demands of the Na+/K+ ATPase in mammalian astrocytes. Glia 21:35–45. https://doi.org/10.1002/(SICI)1098-1136(199709)21:1%3c35::AID-GLIA4%3e3.0.CO;2-0
Article CAS PubMed Google Scholar
Rose CR, Karus C (2013) Two sides of the same coin: Sodium homeostasis and signaling in astrocytes under physiological and pathophysiological conditions. Glia 61:1191–1205. https://doi.org/10.1002/glia.22492
Andersen JV, Schousboe A, Verkhratsky A (2022) Astrocyte energy and neurotransmitter metabolism in Alzheimer’s disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 217:102331. https://doi.org/10.1016/j.pneurobio.2022.102331
Article CAS PubMed Google Scholar
Rose CF, Verkhratsky A, Parpura V (2013) Astrocyte glutamine synthetase: pivotal in health and disease. Biochem Soc Trans 41:1518–1524. https://doi.org/10.1042/BST20130237
Article CAS PubMed Google Scholar
Hirrlinger J, Dringen R (2005) Multidrug resistance protein 1-mediated export of glutathione and glutathione disulfide from brain astrocytes. Methods Enzymol 400:395–409
Article CAS PubMed Google Scholar
Rich LR, Harris W, Brown AM (2019) The role of brain glycogen in supporting physiological function. Front Neurosci 13:1176. https://doi.org/10.3389/fnins.2019.01176
Article PubMed PubMed Central Google Scholar
Lee JA, Hall B, Allsop J et al (2021) Lipid metabolism in astrocytic structure and function. Semin Cell Dev Biol 112:123–136. https://doi.org/10.1016/j.semcdb.2020.07.017
Article CAS PubMed Google Scholar
Hertz L, Peng L, Dienel GA (2007) ) Energy metabolism in astrocytes: High rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249. https://doi.org/10.1038/sj.jcbfm.9600343
Article CAS PubMed Google Scholar
Harders AR, Arend C, Denieffe SC et al (2023) Endogenous energy stores maintain a high ATP concentration for hours in glucose-depleted cultured primary rat astrocytes. Neurochem Res 48:2241–2252. https://doi.org/10.1007/s11064-023-03903-1
Article CAS PubMed PubMed Central Google Scholar
Supplie LM, Düking T, Campbell G et al (2017) Respiration-deficient astrocytes survive as glycolytic cells in vivo. J Neurosci 37:4231–4242. https://doi.org/10.1523/JNEUROSCI.0756-16.2017
Article CAS PubMed PubMed Central Google Scholar
Arend C, Ehrke E, Dringen R (2019) Consequences of a metabolic glucose-depletion on the survival and the metabolism of cultured rat astrocytes. Neurochem Res 44:2288–2300. https://doi.org/10.1007/s11064-019-02752-1
Article CAS PubMed Google Scholar
Longuemare MC, Hill MP, Swanson RA (1994) Glycolysis can prevent non-synaptic excitatory amino acid release during hypoxia. NeuroReport 5:1789–1792. https://doi.org/10.1097/00001756-199409080-00026
Article CAS PubMed Google Scholar
Rutledge EM, Mongin AA, Kimelberg HK (1999) Intracellular ATP depletion inhibits swelling-induced D-[3H]aspartate release from primary astrocyte cultures. Brain Res 842:39–45. https://doi.org/10.1016/s0006-8993(99)01805-3
Article CAS PubMed Google Scholar
Nodin C, Zhu C, Blomgren K et al (2012) Decreased oxidative stress during glycolytic inhibition enables maintenance of ATP production and astrocytic survival. Neurochem Int 61:291–301. https://doi.org/10.1016/j.neuint.2012.05.017
Article CAS PubMed Google Scholar
Winkler U, Seim P, Köhler S et al (2017) Activity-dependent modulation of intracellular ATP in cultured cortical astrocytes. J Neurosci Res 95:2172–2181. https://doi.org/10.1002/jnr.24020
Article CAS PubMed Google Scholar
Wilson CS, Bach MD, Ashkavand Z et al (2019) Metabolic constraints of swelling-activated glutamate release in astrocytes and their implication for ischemic tissue damage. J Neurochem 151:255–272. https://doi.org/10.1111/jnc.14711
Article CAS PubMed PubMed Central Google Scholar
Hori O, Matsumoto M, Maeda Y et al (2008) Metabolic and biosynthetic alterations in cultured astrocytes exposed to hypoxia/reoxygenation. J Neurochem 62:1489–1495. https://doi.org/10.1046/j.1471-4159.1994.62041489.x
Zoref-Shani E, Bromberg Y, Lilling G et al (1995) Developmental changes in purine nucleotide metabolism in cultured rat astroglia. Int J Dev Neurosci 13:887–896. https://doi.org/10.1016/0736-5748(95)00054-2
Article CAS PubMed Google Scholar
Reinhardt R, Manaenko A, Pissarek M et al (2002) Alterations of purine and pyrimidine nucleotide contents in rat corticoencephalic cell cultures following metabolic damage and treatment with openers and blockers of ATP-sensitive potassium channels. Neurochem Int 40:427–433. https://doi.org/10.1016/S0197-0186(01)00102-4
Article CAS PubMed Google Scholar
Tang KS, Suh SW, Alano CC et al (2010) Astrocytic poly(ADP-ribose) polymerase-1 activation leads to bioenergetic depletion and inhibition of glutamate uptake capacity. Glia 58:446–457. https://doi.org/10.1002/glia.20936
Bhatt DP, Chen X, Geiger JD, Rosenberger TA (2012) A sensitive HPLC-based method to quantify adenine nucleotides in primary astrocyte cell cultures. J Chromatogr B 889–890:110–115. https://doi.org/10.1016/j.jchromb.2012.02.005
Atkinson DE, Walton GM (1967) Adenosine triphosphate conservation in metabolic regulation. J Biol Chem 242:3239–3241. https://doi.org/10.1016/S0021-9258(18)95956-9
Article CAS PubMed Google Scholar
De La Fuente IM, Cortés JM, Valero E et al (2014) On the dynamics of the adenylate energy system: homeorhesis vs homeostasis. PLoS ONE 9:e108676. https://doi.org/10.1371/journal.pone.0108676
Article CAS PubMed PubMed Central Google Scholar
Sahlin K, Harris RC (2011) The creatine kinase reaction: a simple reaction with functional complexity. Amino Acids 40:1363–1367. https://doi.org/10.1007/s00726-011-0856-8
Article CAS PubMed Google Scholar
Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40:1271–1296. https://doi.org/10.1007/s00726-011-0877-3
Article CAS PubMed PubMed Central Google Scholar
Hanna-El-Daher L, Braissant O (2016) Creatine synthesis and exchanges between brain cells: what can be learned from human creatine deficiencies and various experimental models? Amino Acids 48:1877–1895. https://doi.org/10.1007/s00726-016-2189-0
Article CAS PubMed Google Scholar
Bonilla DA, Kreider RB, Stout JR et al (2021) Metabolic basis of creatine in health and disease: a bioinformatics-assisted review. Nutrients 13:1238. https://doi.org/10.3390/nu13041238
Article CAS PubMed PubMed Central Google Scholar
Manos P, Bryan GK, Edmond J (1991) Creatine kinase activity in postnatal rat brain development and in cultured neurons, astrocytes, and oligodendrocytes. J Neurochem 56:2101–2107. https://doi.org/10.1111/j.1471-4159.1991.tb03472.x
Comments (0)