Increased Expression of KNa1.2 Channel by MAPK Pathway Regulates Neuronal Activity Following Traumatic Brain Injury

Trimmer JS (2015) Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity. Neuron 85:238–256. https://doi.org/10.1016/j.neuron.2014.12.042

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhattacharjee A, Joiner WJ, Wu M, Yang Y, Sigworth FJ, Kaczmarek LK (2003) Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J Neurosci 23:11681–11691. https://doi.org/10.1523/JNEUROSCI.23-37-11681.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang B, Desai R, Kaczmarek LK (2007) Slack and slick K(na) channels regulate the accuracy of timing of auditory neurons. J Neurosci 27:2617–2627. https://doi.org/10.1523/JNEUROSCI.5308-06.2007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomasello DL, Hurley E, Wrabetz L, Bhattacharjee A (2017) Slick (Kcnt2) sodium-activated potassium channels limit peptidergic nociceptor excitability and hyperalgesia. J Exp Neurosci 11:1179069517726996. https://doi.org/10.1177/1179069517726996

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rizzi S, Knaus HG, Schwarzer C (2016) Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain. J Comp Neurol 524:2093–2116. https://doi.org/10.1002/cne.23934

Article  CAS  PubMed  Google Scholar 

Barcia G, Fleming MR, Deligniere A et al (2012) De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet 44:1255–1259. https://doi.org/10.1038/ng.2441

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heron SE, Smith KR, Bahlo M et al (2012) Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 44:1188–1190. https://doi.org/10.1038/ng.2440

Article  CAS  PubMed  Google Scholar 

Kim GE, Kronengold J, Barcia G et al (2014) Human slack potassium channel mutations increase positive cooperativity between individual channels. Cell Rep 9:1661–1672. https://doi.org/10.1016/j.celrep.2014.11.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukuoka M, Kuki I, Kawawaki H et al (2017) Quinidine therapy for west syndrome with KCNTI mutation: a case report. Brain Dev 39:80–83. https://doi.org/10.1016/j.braindev.2016.08.002

Article  PubMed  Google Scholar 

Moller RS, Heron SE, Larsen LH et al (2015) Mutations in KCNT1 cause a spectrum of focal epilepsies. Epilepsia 56:e114-120. https://doi.org/10.1111/epi.13071

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ambrosino P, Soldovieri MV, Bast T et al (2018) De novo gain-of-function variants in KCNT2 as a novel cause of developmental and epileptic encephalopathy. Ann Neurol 83:1198–1204. https://doi.org/10.1002/ana.25248

Article  CAS  PubMed  Google Scholar 

Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21:375–378. https://doi.org/10.1097/00001199-200609000-00001

Article  PubMed  Google Scholar 

Malec JF, Ketchum JM, Hammond FM et al (2019) Longitudinal effects of medical comorbidities on functional outcome and life satisfaction after traumatic brain injury: an individual growth curve analysis of NIDILRR traumatic brain injury model system data. J Head Trauma Rehabil 34:E24–E35. https://doi.org/10.1097/HTR.0000000000000459

Article  PubMed  PubMed Central  Google Scholar 

Singh IN, Sullivan PG, Deng Y, Mbye LH, Hall ED (2006) Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J Cereb Blood Flow Metab 26:1407–1418. https://doi.org/10.1038/sj.jcbfm.9600297

Article  CAS  PubMed  Google Scholar 

Alam A, Thelin EP, Tajsic T et al (2020) Cellular infiltration in traumatic brain injury. J Neuroinflamm 17:328. https://doi.org/10.1186/s12974-020-02005-x

Article  CAS  Google Scholar 

Golub VM, Reddy DS (2022) Post-traumatic epilepsy and comorbidities: advanced models, molecular mechanisms, biomarkers, and novel therapeutic interventions. Pharmacol Rev 74:387–438. https://doi.org/10.1124/pharmrev.121.000375

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomasello DL, Gancarz-Kausch AM, Dietz DM, Bhattacharjee A (2015) Transcriptional regulation of the sodium-activated potassium channel SLICK (KCNT2) promoter by nuclear factor-kappab. J Biol Chem 290:18575–18583. https://doi.org/10.1074/jbc.M115.643536

Article  CAS  PubMed  PubMed Central  Google Scholar 

Webster KM, Sun M, Crack P, O’Brien TJ, Shultz SR, Semple BD (2017) Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation 14:10. https://doi.org/10.1186/s12974-016-0786-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ravizza T, Balosso S, Vezzani A (2011) Inflammation and prevention of epileptogenesis. Neurosci Lett 497:223–230. https://doi.org/10.1016/j.neulet.2011.02.040

Article  CAS  PubMed  Google Scholar 

Kalra S, Malik R, Singh G et al (2022) Pathogenesis and management of traumatic brain injury (TBI): role of neuroinflammation and anti-inflammatory drugs. Inflammopharmacology 30:1153–1166. https://doi.org/10.1007/s10787-022-01017-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gururaj S, Fleites J, Bhattacharjee A (2016) Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation. Neuropharmacology 103:279–289. https://doi.org/10.1016/j.neuropharm.2015.12.016

Article  CAS  PubMed  Google Scholar 

Wang K, Wang F, Bao JP et al (2017) Tumor necrosis factor alpha modulates sodium-activated potassium channel SLICK in rat dorsal horn neurons via p38 MAPK activation pathway. J Pain Res 10:1265–1271. https://doi.org/10.2147/JPR.S132185

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun L, Liu R, Yang H, Yu T, Wu J, Wang Q (2022) Characteristics of epileptiform spike-wave discharges and chronic histopathology in controlled cortical impact model of Sprague-Dawley rats. Neurochem Res. https://doi.org/10.1007/s11064-022-03542-y

Article  PubMed  PubMed Central  Google Scholar 

Cheng L, Xing Y, Zhang H et al (2022) Mechanistic analysis of micro-neurocircuits underlying the epileptogenic zone in focal cortical dysplasia patients. Cereb Cortex 32:2216–2230. https://doi.org/10.1093/cercor/bhab350

Article  PubMed  Google Scholar 

Shore AN, Colombo S, Tobin WF et al (2020) Reduced GABAergic neuron excitability, altered synaptic connectivity, and seizures in a KCNT1 gain-of-function mouse model of childhood epilepsy. Cell Rep 33:108303. https://doi.org/10.1016/j.celrep.2020.108303

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zamani A, Powell KL, May A, Semple BD (2020) Validation of reference genes for gene expression analysis following experimental traumatic brain injury in a pediatric mouse model. Brain Res Bull 156:43–49. https://doi.org/10.1016/j.brainresbull.2019.12.015

Article  CAS  PubMed  Google Scholar 

Chapillon P, Lalonde R, Jones N, Caston J (1998) Early development of synchronized walking on the rotorod in rats. Effects of training and handling. Behav Brain Res 93:77–81. https://doi.org/10.1016/s0166-4328(97)00137-x

Article  CAS  PubMed  Google Scholar 

Ilhan A, Gurel A, Armutcu F, Kamisli S, Iraz M (2005) Antiepileptogenic and antioxidant effects of Nigella sativa oil against pentylenetetrazol-induced kindling in mice. Neuropharmacology 49:456–464. https://doi.org/10.1016/j.neuropharm.2005.04.004

Article  CAS  PubMed  Google Scholar 

Semple BD, O’Brien TJ, Gimlin K et al (2017) Interleukin-1 receptor in seizure susceptibility after traumatic Injury to the pediatric brain. J Neurosci 37:7864–7877. https://doi.org/10.1523/jneurosci.0982-17.2017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y-T, Chuang Y-C, Lo Y-S et al (2020) Asiatic Acid, extracted from Centella asiatica and induces apoptosis pathway through the phosphorylation p38 mitogen-activated protein kinase in cisplatin-resistant nasopharyngeal carcinoma cells. Biomolecules 10:184. https://doi.org/10.3390/biom10020184

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez-Espinosa PL, Wu J, Yang C et al (2015) Knockout of Slo2.2 enhances itch, abolishes KNa current, and increases action potential firing frequency in DRG neurons. Elife 4:e10013. https://doi.org/10.7554/eLife.10013

Article  PubMed  PubMed Central  Google Scholar 

Mao X, Bruneau N, Gao Q et al (2020) The epilepsy of infanc

Comments (0)

No login
gif