Quincozes-Santos A, Santos CL, de Souza Almeida RR et al (2021) Gliotoxicity and glioprotection: the dual role of glial cells. Mol Neurobiol 58:6577–6592. https://doi.org/10.1007/s12035-021-02574-9
Article CAS PubMed PubMed Central Google Scholar
Durkee CA, Araque A (2019) Diversity and specificity of astrocyte–neuron communication. Neuroscience 396:73–78. https://doi.org/10.1016/j.neuroscience.2018.11.010
Article CAS PubMed Google Scholar
Matejuk A, Ransohoff RM (2020) Crosstalk between astrocytes and microglia: an overview. Front Immunol 11:1416. https://doi.org/10.3389/fimmu.2020.01416
Article CAS PubMed PubMed Central Google Scholar
Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942–952. https://doi.org/10.1038/nn.4043
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20:588–594. https://doi.org/10.1016/j.conb.2010.06.005
Article CAS PubMed Google Scholar
Kesner RP, Churchwell JC (2011) An analysis of rat prefrontal cortex in mediating executive function. Neurobiol Learn Mem 96:417–431. https://doi.org/10.1016/j.nlm.2011.07.002
Schneeberger M, Gomis R, Claret M (2014) Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol 220:T25–T46. https://doi.org/10.1530/JOE-13-0398
Article CAS PubMed Google Scholar
Burfeind KG, Michaelis KA, Marks DL (2016) The central role of hypothalamic inflammation in the acute Illness response and cachexia. Semin Cell Dev Biol 54:42–52. https://doi.org/10.1016/j.semcdb.2015.10.038
Sofroniew MV (2020) Astrocyte reactivity: subtypes, States, and functions in CNS innate immunity. Trends Immunol 41:758–770. https://doi.org/10.1016/j.it.2020.07.004
Article CAS PubMed PubMed Central Google Scholar
Owens T, Khorooshi R, Wlodarczyk A, Asgari N (2014) Interferons in the central nervous system: a few instruments play many tunes: glial interferons. Glia 62:339–355. https://doi.org/10.1002/glia.22608
González-Navajas JM, Lee J, David M, Raz E (2012) Immunomodulatory functions of type I interferons. Nat Rev Immunol 12:125–135. https://doi.org/10.1038/nri3133
Article CAS PubMed PubMed Central Google Scholar
Hosseini S, Michaelsen-Preusse K, Grigoryan G et al (2020) Type I Interferon receptor signaling in astrocytes regulates hippocampal synaptic plasticity and cognitive function of the healthy CNS. Cell Rep 31:107666. https://doi.org/10.1016/j.celrep.2020.107666
Article CAS PubMed Google Scholar
Deczkowska A, Baruch K, Schwartz M (2016) Type I/II Interferon Balance in the regulation of Brain Physiology and Pathology. Trends Immunol 37:181–192. https://doi.org/10.1016/j.it.2016.01.006
Article CAS PubMed Google Scholar
Sovrani V, Bobermin LD, Sesterheim P et al (2023) Glioprotective effects of resveratrol in hypothalamic astrocyte cultures obtained from interferon receptor knockout (IFNα/βR–/–) mice. In Vitro CellDevBiol-Animal. https://doi.org/10.1007/s11626-023-00777-z
York AG, Williams KJ, Argus JP et al (2015) Limiting cholesterol Biosynthetic Flux spontaneously engages type I IFN Signaling. Cell 163:1716–1729. https://doi.org/10.1016/j.cell.2015.11.045
Article CAS PubMed PubMed Central Google Scholar
Li D, Zhang J, Liu Q (2022) Brain cell type-specific cholesterol metabolism and implications for learning and memory. Trends Neurosci 45:401–414. https://doi.org/10.1016/j.tins.2022.01.002
Article CAS PubMed Google Scholar
van Stee MF, de Graaf AA, Groen AK (2018) Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy. Cardiovasc Diabetol 17:94. https://doi.org/10.1186/s12933-018-0738-4
Article CAS PubMed PubMed Central Google Scholar
Schultz BG, Patten DK, Berlau DJ (2018) The role of statins in both cognitive impairment and protection against Dementia: a tale of two mechanisms. Transl Neurodegener 7:5. https://doi.org/10.1186/s40035-018-0110-3
Article CAS PubMed PubMed Central Google Scholar
Yokota K, Miyazaki T, Hirano M et al (2006) Simvastatin inhibits production of interleukin 6 (IL-6) and IL-8 and cell proliferation induced by Tumor necrosis factor-alpha in fibroblast-like synoviocytes from patients with rheumatoid arthritis. J Rheumatol 33:463–471
Chataway J, Schuerer N, Alsanousi A et al (2014) Effect of high-dose simvastatin on brain atrophy and disability in secondary Progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. The Lancet 383:2213–2221. https://doi.org/10.1016/S0140-6736(13)62242-4
Vahedian-Azimi A, Mohammadi SM, Banach M et al (2021) Improved COVID-19 outcomes following statin therapy: an updated systematic review and Meta-analysis. Biomed Res Int 2021:1–20. https://doi.org/10.1155/2021/1901772
Wu H, Mahmood A, Lu D et al (2010) Attenuation of astrogliosis and modulation of endothelial growth factor receptor in lipid rafts by simvastatin after traumatic brain injury: Laboratory investigation. JNS 113:591–597. https://doi.org/10.3171/2009.9.JNS09859
Christophe B, Karatela M, Sanchez J et al (2020) Statin therapy in ischemic Stroke models: a Meta-analysis. Transl Stroke Res 11:590–600. https://doi.org/10.1007/s12975-019-00750-7
Article CAS PubMed Google Scholar
Tramontina AC, Wartchow KM, Rodrigues L et al (2011) The neuroprotective effect of two statins: simvastatin and pravastatin on a streptozotocin-induced model of Alzheimer’s Disease in rats. J Neural Transm 118:1641–1649. https://doi.org/10.1007/s00702-011-0680-z
Article CAS PubMed Google Scholar
Yan J, Xu Y, Zhu C et al (2011) Simvastatin prevents dopaminergic neurodegeneration in experimental parkinsonian models: the Association with anti-inflammatory responses. PLoS ONE 6:e20945. https://doi.org/10.1371/journal.pone.0020945
Article CAS PubMed PubMed Central Google Scholar
Yan J, Liu A, Fan H et al (2020) Simvastatin improves behavioral disorders and hippocampal inflammatory reaction by NMDA-Mediated anti-inflammatory function in MPTP-Treated mice. Cell Mol Neurobiol 40:1155–1164. https://doi.org/10.1007/s10571-020-00804-7
Article CAS PubMed Google Scholar
Ekladious ST, El Sayed NS (2019) Effect of pioglitazone and simvastatin in lipopolysaccharide-induced amyloidogenesis and cognitive impairment in mice: possible role of glutamatergic pathway and oxidative stress. Behav Pharmacol 30:5–15. https://doi.org/10.1097/FBP.0000000000000407
Article CAS PubMed Google Scholar
Wu F, Luo T, Mei Y et al (2018) Simvastatin alters M1/M2 polarization of murine BV2 microglia via notch signaling. J Neuroimmunol 316:56–64. https://doi.org/10.1016/j.jneuroim.2017.12.010
Article CAS PubMed Google Scholar
Chen X-Y, Li K, Light AR, Fu K-Y (2013) Simvastatin attenuates Formalin-Induced nociceptive behaviors by inhibiting Microglial RhoA and p38 MAPK activation. J Pain 14:1310–1319. https://doi.org/10.1016/j.jpain.2013.05.011
Article CAS PubMed Google Scholar
Yu X-B, Zhang H-N, Dai Y et al (2019) Simvastatin prevents and ameliorates depressive behaviors via neuroinflammatory regulation in mice. J Affect Disord 245:939–949. https://doi.org/10.1016/j.jad.2018.11.086
Article CAS PubMed Google Scholar
Li B, Mahmood A, Lu D, SIMVASTATIN ATTENUATES MICROGLIAL CELLS AND ASTROCYTE ACTIVATION AND DECREASES INTERLEUKIN-1B LEVEL AFTER TRAUMATIC BRAIN INJURY (2009) Neurosurgery 65:179–186. https://doi.org/10.1227/01.NEU.0000346272.76537.DC
Patassini S, Giampà C, Martorana A et al (2008) Effects of simvastatin on neuroprotection and modulation of Bcl-2 and BAX in the rat quinolinic acid model of Huntington’s Disease. Neurosci Lett 448:166–169. https://doi.org/10.1016/j.neulet.2008.10.023
Article CAS PubMed Google Scholar
Tong H, Zhang X, Meng X et al (2018) Simvastatin inhibits activation of NADPH Oxidase/p38 MAPK pathway and enhances expression of antioxidant protein in Parkinson Disease models. Front Mol Neurosci 11:165. https://doi.org/10.3389/fnmol.2018.00165
Article CAS PubMed PubMed Central Google Scholar
McFarland AJ, Davey AK, McDermott CM et al (2018) Differences in statin associated neuroprotection corresponds with either decreased production of IL-1β or TNF-α in an in vitro model of neuroinflammation-induced neurodegeneration. Toxicol Appl Pharmcol 344:56–73. https://doi.org/10.1016/j.taap.2018.03.005
Comments (0)