Simvastatin Differentially Modulates Glial Functions in Cultured Cortical and Hypothalamic Astrocytes Derived from Interferon α/β Receptor Knockout mice

Quincozes-Santos A, Santos CL, de Souza Almeida RR et al (2021) Gliotoxicity and glioprotection: the dual role of glial cells. Mol Neurobiol 58:6577–6592. https://doi.org/10.1007/s12035-021-02574-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Durkee CA, Araque A (2019) Diversity and specificity of astrocyte–neuron communication. Neuroscience 396:73–78. https://doi.org/10.1016/j.neuroscience.2018.11.010

Article  CAS  PubMed  Google Scholar 

Matejuk A, Ransohoff RM (2020) Crosstalk between astrocytes and microglia: an overview. Front Immunol 11:1416. https://doi.org/10.3389/fimmu.2020.01416

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942–952. https://doi.org/10.1038/nn.4043

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20:588–594. https://doi.org/10.1016/j.conb.2010.06.005

Article  CAS  PubMed  Google Scholar 

Kesner RP, Churchwell JC (2011) An analysis of rat prefrontal cortex in mediating executive function. Neurobiol Learn Mem 96:417–431. https://doi.org/10.1016/j.nlm.2011.07.002

Article  PubMed  Google Scholar 

Schneeberger M, Gomis R, Claret M (2014) Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol 220:T25–T46. https://doi.org/10.1530/JOE-13-0398

Article  CAS  PubMed  Google Scholar 

Burfeind KG, Michaelis KA, Marks DL (2016) The central role of hypothalamic inflammation in the acute Illness response and cachexia. Semin Cell Dev Biol 54:42–52. https://doi.org/10.1016/j.semcdb.2015.10.038

Article  PubMed  Google Scholar 

Sofroniew MV (2020) Astrocyte reactivity: subtypes, States, and functions in CNS innate immunity. Trends Immunol 41:758–770. https://doi.org/10.1016/j.it.2020.07.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Owens T, Khorooshi R, Wlodarczyk A, Asgari N (2014) Interferons in the central nervous system: a few instruments play many tunes: glial interferons. Glia 62:339–355. https://doi.org/10.1002/glia.22608

Article  PubMed  Google Scholar 

González-Navajas JM, Lee J, David M, Raz E (2012) Immunomodulatory functions of type I interferons. Nat Rev Immunol 12:125–135. https://doi.org/10.1038/nri3133

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hosseini S, Michaelsen-Preusse K, Grigoryan G et al (2020) Type I Interferon receptor signaling in astrocytes regulates hippocampal synaptic plasticity and cognitive function of the healthy CNS. Cell Rep 31:107666. https://doi.org/10.1016/j.celrep.2020.107666

Article  CAS  PubMed  Google Scholar 

Deczkowska A, Baruch K, Schwartz M (2016) Type I/II Interferon Balance in the regulation of Brain Physiology and Pathology. Trends Immunol 37:181–192. https://doi.org/10.1016/j.it.2016.01.006

Article  CAS  PubMed  Google Scholar 

Sovrani V, Bobermin LD, Sesterheim P et al (2023) Glioprotective effects of resveratrol in hypothalamic astrocyte cultures obtained from interferon receptor knockout (IFNα/βR–/–) mice. In Vitro CellDevBiol-Animal. https://doi.org/10.1007/s11626-023-00777-z

York AG, Williams KJ, Argus JP et al (2015) Limiting cholesterol Biosynthetic Flux spontaneously engages type I IFN Signaling. Cell 163:1716–1729. https://doi.org/10.1016/j.cell.2015.11.045

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li D, Zhang J, Liu Q (2022) Brain cell type-specific cholesterol metabolism and implications for learning and memory. Trends Neurosci 45:401–414. https://doi.org/10.1016/j.tins.2022.01.002

Article  CAS  PubMed  Google Scholar 

van Stee MF, de Graaf AA, Groen AK (2018) Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy. Cardiovasc Diabetol 17:94. https://doi.org/10.1186/s12933-018-0738-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schultz BG, Patten DK, Berlau DJ (2018) The role of statins in both cognitive impairment and protection against Dementia: a tale of two mechanisms. Transl Neurodegener 7:5. https://doi.org/10.1186/s40035-018-0110-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yokota K, Miyazaki T, Hirano M et al (2006) Simvastatin inhibits production of interleukin 6 (IL-6) and IL-8 and cell proliferation induced by Tumor necrosis factor-alpha in fibroblast-like synoviocytes from patients with rheumatoid arthritis. J Rheumatol 33:463–471

CAS  PubMed  Google Scholar 

Chataway J, Schuerer N, Alsanousi A et al (2014) Effect of high-dose simvastatin on brain atrophy and disability in secondary Progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. The Lancet 383:2213–2221. https://doi.org/10.1016/S0140-6736(13)62242-4

Article  CAS  Google Scholar 

Vahedian-Azimi A, Mohammadi SM, Banach M et al (2021) Improved COVID-19 outcomes following statin therapy: an updated systematic review and Meta-analysis. Biomed Res Int 2021:1–20. https://doi.org/10.1155/2021/1901772

Article  CAS  Google Scholar 

Wu H, Mahmood A, Lu D et al (2010) Attenuation of astrogliosis and modulation of endothelial growth factor receptor in lipid rafts by simvastatin after traumatic brain injury: Laboratory investigation. JNS 113:591–597. https://doi.org/10.3171/2009.9.JNS09859

Article  CAS  Google Scholar 

Christophe B, Karatela M, Sanchez J et al (2020) Statin therapy in ischemic Stroke models: a Meta-analysis. Transl Stroke Res 11:590–600. https://doi.org/10.1007/s12975-019-00750-7

Article  CAS  PubMed  Google Scholar 

Tramontina AC, Wartchow KM, Rodrigues L et al (2011) The neuroprotective effect of two statins: simvastatin and pravastatin on a streptozotocin-induced model of Alzheimer’s Disease in rats. J Neural Transm 118:1641–1649. https://doi.org/10.1007/s00702-011-0680-z

Article  CAS  PubMed  Google Scholar 

Yan J, Xu Y, Zhu C et al (2011) Simvastatin prevents dopaminergic neurodegeneration in experimental parkinsonian models: the Association with anti-inflammatory responses. PLoS ONE 6:e20945. https://doi.org/10.1371/journal.pone.0020945

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan J, Liu A, Fan H et al (2020) Simvastatin improves behavioral disorders and hippocampal inflammatory reaction by NMDA-Mediated anti-inflammatory function in MPTP-Treated mice. Cell Mol Neurobiol 40:1155–1164. https://doi.org/10.1007/s10571-020-00804-7

Article  CAS  PubMed  Google Scholar 

Ekladious ST, El Sayed NS (2019) Effect of pioglitazone and simvastatin in lipopolysaccharide-induced amyloidogenesis and cognitive impairment in mice: possible role of glutamatergic pathway and oxidative stress. Behav Pharmacol 30:5–15. https://doi.org/10.1097/FBP.0000000000000407

Article  CAS  PubMed  Google Scholar 

Wu F, Luo T, Mei Y et al (2018) Simvastatin alters M1/M2 polarization of murine BV2 microglia via notch signaling. J Neuroimmunol 316:56–64. https://doi.org/10.1016/j.jneuroim.2017.12.010

Article  CAS  PubMed  Google Scholar 

Chen X-Y, Li K, Light AR, Fu K-Y (2013) Simvastatin attenuates Formalin-Induced nociceptive behaviors by inhibiting Microglial RhoA and p38 MAPK activation. J Pain 14:1310–1319. https://doi.org/10.1016/j.jpain.2013.05.011

Article  CAS  PubMed  Google Scholar 

Yu X-B, Zhang H-N, Dai Y et al (2019) Simvastatin prevents and ameliorates depressive behaviors via neuroinflammatory regulation in mice. J Affect Disord 245:939–949. https://doi.org/10.1016/j.jad.2018.11.086

Article  CAS  PubMed  Google Scholar 

Li B, Mahmood A, Lu D, SIMVASTATIN ATTENUATES MICROGLIAL CELLS AND ASTROCYTE ACTIVATION AND DECREASES INTERLEUKIN-1B LEVEL AFTER TRAUMATIC BRAIN INJURY (2009) Neurosurgery 65:179–186. https://doi.org/10.1227/01.NEU.0000346272.76537.DC

Article  PubMed  Google Scholar 

Patassini S, Giampà C, Martorana A et al (2008) Effects of simvastatin on neuroprotection and modulation of Bcl-2 and BAX in the rat quinolinic acid model of Huntington’s Disease. Neurosci Lett 448:166–169. https://doi.org/10.1016/j.neulet.2008.10.023

Article  CAS  PubMed  Google Scholar 

Tong H, Zhang X, Meng X et al (2018) Simvastatin inhibits activation of NADPH Oxidase/p38 MAPK pathway and enhances expression of antioxidant protein in Parkinson Disease models. Front Mol Neurosci 11:165. https://doi.org/10.3389/fnmol.2018.00165

Article  CAS  PubMed  PubMed Central  Google Scholar 

McFarland AJ, Davey AK, McDermott CM et al (2018) Differences in statin associated neuroprotection corresponds with either decreased production of IL-1β or TNF-α in an in vitro model of neuroinflammation-induced neurodegeneration. Toxicol Appl Pharmcol 344:56–73. https://doi.org/10.1016/j.taap.2018.03.005

Article  CAS 

Comments (0)

No login
gif