Reis; Catarina; Pinto; Rijo; Patricia; Faustino; Celia. Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacol Res. 2017;120:68–87.
Hui ZA; Yg A; Yl A; Ah A; Xz A; Jl A; Gy A; Li ZB; Jaw B; Jie LA. Intelligently thermoresponsive flower-like hollow nano-ruthenium system for sustained release of nerve growth factor to inhibit hyperphosphorylation of tau and neuronal damage for the treatment of Alzheimer's disease. Biomaterials. 2020; 237.
Flotte TR, Frederickson RM, Lowenstein PR, Mueller C. Moving Forward Toward a Cure for Parkinson’s: Neuropathology of the Nigrostriatal Pathway Determines the Location of Growth Factor Delivery. Mol Ther. 2011;19(5):827–9. https://doi.org/10.1038/mt.2011.76.
Tang YC, Tian HX, Yi T, Chen HB. The critical roles of mitophagy in cerebral ischemia. Protein Cell. 2016;7(10):699–713. https://doi.org/10.1007/s13238-016-0307-0FromNLM.
Li G, Xiao Q, Zhang L, Zhao Y, Yang Y. Nerve growth factor loaded heparin/chitosan scaffolds for accelerating peripheral nerve regeneration. Carbohyd Polym. 2017;171:39.
Diao Y, Chen Y, Zhang P, Cui L, Zhang J. Molecular guidance cues in the development of visual pathway. Protein Cell. 2018;9(11):909–29. https://doi.org/10.1007/s13238-017-0490-7FromNLM.
Schubert M, Breakefield X, Federoff H, Frederickson RM, Lowenstein PR. Gene Delivery to the Nervous System: NINDS Workshop on Gene Delivery to the Nervous System Washington, DC, 12–13 November 2007. Molecular therapy : the journal of the American Society of Gene Therapy. 2008;16(4):640–6. https://doi.org/10.1038/mt.2008.42.
Herzog RW; Frederickson RM. Special Issue Features State-of-the-Art in Clinical Gene Therapy. Molecular Therapy. 2020; 28 (9): 1933-. https://doi.org/10.1016/j.ymthe.2020.08.006.
Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune Responses to Viral Gene Therapy Vectors. Mol Ther. 2020;28(3):709–22. https://doi.org/10.1016/j.ymthe.2020.01.001.
Xu D, Wu D, Qin M, Nih LR, Liu C, Cao Z, Ren J, Chen X, He Z, Yu W, Guan J, Duan S, Liu F, Liu X, Li J, Harley D, Xu B, Hou L, Chen ISY, Wen J, Chen W, Pourtaheri S, Lu Y. Efficient Delivery of Nerve Growth Factors to the Central Nervous System for Neural Regeneration. Adv Mater. 2019;31(33):e1900727. https://doi.org/10.1002/adma.201900727FromNLM.
Bai Y; Chen S; Chen X; Zhang W; Zhang Y; Huang F; Ruan K. Preparing recombinant human nerve growth factor (rhNGF) mature peptide by constructing expression vector and engineering bacteria, inclusion of pro-rhNGF expression, collecting cells, cracking pro-rhNGF, washing, dissolution. CN103880943-A.
Sun Q, Han C, Liu L, Wang Y, Deng H, Bai L, Jiang T. Crystal structure and functional implication of the RUN domain of human NESCA. Protein Cell. 2012;3(8):609–17. https://doi.org/10.1007/s13238-012-2052-3FromNLM.
Chen YS, Wang-Bennett LT, Coker NJ. Facial nerve regeneration in the silicone chamber: the influence of nerve growth factor. Exp Neurol. 1989;103(1):52–60.
Ogawa SI; Nabeshima T; Kameyama T; Hayashi KJJJoP. Effects of Nerve Growth Factor (NGF) in Rats with Basal Forebrain Lesions - ScienceDirect. 1993; 61 (2): 141–4.
Cao Y, Wang H, Zeng W. Whole-tissue 3D imaging reveals intra-adipose sympathetic plasticity regulated by NGF-TrkA signal in cold-induced beiging. Protein Cell. 2018;9(6):527–39. https://doi.org/10.1007/s13238-018-0528-5FromNLM.
Micera A, Puxeddu I, Aloe L, Levi-Schaffer F. New insights on the involvement of Nerve Growth Factor in allergic inflammation and fibrosis. Cytokine Growth Factor Rev. 2003;14(5):369–74. https://doi.org/10.1016/s1359-6101(03)00047-9FromNLM.
Allen SJ, Robertson AGS, Tyler SJ, Wilcock GK, Dawbarn D. Recombinant human nerve growth factor for clinical trials: protein expression, purification, stability and characterisation of binding to infusion pumps. J Biochem Biophys Methods. 2001;47(3):239–55. https://doi.org/10.1016/s0165-022x(01)00134-8.
Li R; Li Y; Wu Y; Zhao Y; Chen H; Yuan Y; Xu K; Zhang H; Lu Y; Wang J. Heparin-Poloxamer Thermosensitive Hydrogel Loaded with bFGF and NGF Enhances Peripheral Nerve Regeneration in Diabetic Rats. Biomaterials. 2018: 24–37.
Jiao G; Pan Y; Wang C; Li ZX; Li Z; Guo R. A bridging SF/Alg composite scaffold loaded NGF for spinal cord injury repair. Materials Science Engineering: C. 2017; 76 (Jul.): 81–7.
Madduri S, Papaloïzos M, Gander B. Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration. Biomaterials. 2010;31(8):2323–34. https://doi.org/10.1016/j.biomaterials.2009.11.073FromNLM.
Nishizawa M, Ozawa F, Higashizaki T, Hirai K, Hishinuma F. Biologically active human and mouse nerve growth factors secreted by the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1993;38(5):624–30. https://doi.org/10.1007/bf00182801FromNLM.
Cenciarelli C, Budoni M, Mercanti D, Fernandez E, Pallini R, Aloe L, Cimino V, Maira G, Casalbore P. In vitro analysis of mouse neural stem cells genetically modified to stably express human NGF by a novel multigenic viral expression system. Neurol Res. 2006;28(5):505–12. https://doi.org/10.1179/016164106x115161.
Xu L, Li Y, Shi X, Han C, Tao L, Yang Q, Rao C. Expression, purification, and characterization of recombinant mouse nerve growth factor in Chinese hamster ovary cells. Protein Expr Purif. 2014;104:41–9. https://doi.org/10.1016/j.pep.2014.09.007.
Lambiase A, Coassin M, Sposato V, Micera A, Sacchetti M, Bonini S, Aloe L. NGF topical application in patients with corneal ulcer does not generate circulating NGF antibodies. J Pharmacological Research. 2007;56(1):65–9.
Peng LH, Fung KP, Leung PC, Gao JQ. Genetically manipulated adult stem cells for wound healing. Drug Discov Today. 2011;16(21–22):957–66. https://doi.org/10.1016/j.drudis.2011.07.009FromNLM.
Tan M; Xu Y; Gao Z; Yuan T; Liu Q; Yang R; Zhang B; Peng L. Recent Advances in Intelligent Wearable Medical Devices Integrating Biosensing and Drug Delivery. Adv Mater. 2022: e2108491. https://doi.org/10.1002/adma.202108491 From NLM.
Tan MH, Xu XH, Yuan TJ, Hou X, Wang J, Jiang ZH, Peng LH. Self-powered smart patch promotes skin nerve regeneration and sensation restoration by delivering biological-electrical signals in program. Biomaterials. 2022;283:121413. https://doi.org/10.1016/j.biomaterials.2022.121413FromNLM.
Rattenholl A, Lilie H, Grossmann A, Stern A, Schwarz E, Rudolph R. The pro-sequence facilitates folding of human nerve growth factor from Escherichia coli inclusion bodies. FEBS J. 2010;268(11):3296–303.
McDonald N, Q.; Lapatto R. New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature. 1991; 354 (6352): 411–4.
Dicou E. Expression of recombinant human nerve growth-factor in escherichia-coli. Neurochem Int. 1992;20(1):129–34. https://doi.org/10.1016/0197-0186(92)90136-f.
Kilmon J. Snake venom: "gentler" purification provides attractive nerve growth factor source. American Biotechnology Laboratory. 1992; 10 (11): 18, 20.
Berkmen M. Production of disulfide-bonded proteins in Escherichia coli. Protein Expression Purification. 2011;82(1):240–51.
Choi JH, Lee SY. Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology Biotechnology. 2004;64(5):625–35.
Tilko PG, Hajihassan Z, Moghimi H. Optimization of recombinant beta-NGF expression in Escherichia coli using response surface methodology. Prep Biochem Biotechnol. 2017;47(4):406–13. https://doi.org/10.1080/10826068.2016.1252927.
Correa A; Oppezzo P. Tuning different expression parameters to achieve soluble recombinant proteins in E. coli: advantages of high-throughput screening. Biotechnology Journal. 2011; 6 (6): 715–30.
Sakai A, Ozawa F, Higashizaki T, Shimizu Y, Hishinuma F. Enhanced secretion of human nerve growth factor from Saccharomyces cerevisiae using an advanced delta-integration system. Biotechnolgy. 1992;9(12):1382–5.
Huang M, Wang G, Qin J, Petranovic D, Nielsen J. Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production. Proc Natl Acad Sci U S A. 2018;115(47):E11025–32. https://doi.org/10.1073/pnas.1809921115FromNLM.
Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science. 2006;313(5792):1441–3. https://doi.org/10.1126/science.1130256FromNLM.
Barnett J, Chow J, Nguyen B, Eggers D, Osen E, Jarnagin K, Saldou N, Straub K, Gu L, Erdos L, Chaing HS, Fausnaugh J, Townsend RR, Lile J, Collins F, Chan H. Physicochemical characterization of recombinant human nerve growth-factor produced in insect cells with a baculovirus vector. J Neurochem. 1991;57(3):1052–61. https://doi.org/10.1111/j.1471-4159.1991.tb08256.x.
Li J-N, Wang L, Lv X-K, Wu H-M, Tang H-D. Expression of recombinant human beta-nerve growth factor in insect cells and purification and biological activity of expressed product. Chinese J Biologicals. 2013;26(3):332–49.
Robertson A, Dawbarn D, Allen S, Tyler S, Wilcock G, Robertson A, Dawbarn D, Allen S, Tyler S, Wilcock G. Recombinant human nerve growth factor for clinical trials: protein expression, purification, stability and characterisation of binding to infusion pumps. Journal of Biochemical Biophysical Methods. 2001;47(3):239–55.
Xiao B, Li Q, Feng B, Han Z, Gao D, Li J, Li K, Zhao R, Jiang Z, Hu J, Zhi X. High-level expression of recombinant human nerve growth factor beta in milk of nontransgenic rabbits. J Biosci Bioeng. 2008;105(4):327–34. https://doi.org/10.1263/jbb.105.327.
Zeng F, Li Z, Zhu Q, Dong R, Zhao C, Li G, Li G, Gao W, Jiang G, Zheng E, Cai G, Moisyadi S, Urschitz J, Yang H, Liu D, Wu Z. Production of functional human nerve growth factor from the saliva of transgenic mice by using salivary glands as bioreactors. Sci Rep. 2017;7:41270. https://doi.org/10.1038/srep41270.
Blesch A, Uy HS, Diergardt N, Tuszynski MH. Neurite outgrowth can be modulated in vitro using a tetracycline-repressible gene therapy vector expressing human nerve growth factor. J Neurosci Res. 2000;59(3):402–9. https://doi.org/10.1002/(sici)1097-4547(20000201)59:3%3c402::Aid-jnr14%3e3.3.Co;2-h.
Rooney GE, Moran C, McMahon SS, Ritter T, Maenz M, Fluegel A, Dockery P, O’Brien T, Howard L, Windebank AJ, Barry FP. Gene-modified mesenchymal stem cells express functionally active nerve growth factor on an engineered poly lactic glycolic acid (PLGA) substrate. Tissue Eng Part A. 2008;14(5):681–90. https://doi.org/10.1089/tea.2007.0260.
Fan B-S, Lou J-Y. Recombinant expression of human nerve growth factor beta in rabbit bone marrow mesenchymal stem cells. Mol Biol Rep. 2010;37(8):4083–90. https://doi.org/10.1007/s11033-010-0068-4.
Peng LH, Huang YF, Zhang CZ, Niu J, Chen Y, Chu Y, Jiang ZH, Gao JQ, Mao ZW. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity. Biomaterials. 2016;103:137–49. https://doi.org/10.1016/j.biomaterials.2016.06.057FromNLM.
Colangelo AM, Finotti N, Ceriani M, Alberghina L, Martegani E, Aloe L, Lenzi L, Levi-Montalcini R. Recombinant human nerve growth factor with a marked activity in vitro and in vivo. Proc Natl Acad Sci USA. 2005;102(51):18658–63. https://doi.org/10.1073/pnas.0508734102.
Sanchez-Rodriguez A, Abad P, Arias-Alvarez M, Rebollar PG, Bautista JM, Lorenzo PL, Garcia-Garcia RM. Recombinant rabbit beta nerve growth factor production and its biological effects on sperm and ovulation in rabbits. PLoS ONE. 2019;14(7):e0219780. https://doi.org/10.1371/journal.pone.0219780.
Daniell H, Kulis M, Herzog RW. Plant cell-made protein antigens for inducti
Comments (0)