Cech, T. R. & Steitz, J. A. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157, 77–94 (2014).
Article CAS PubMed Google Scholar
Battich, N., Stoeger, T. & Pelkmans, L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat. Methods 10, 1127–1133 (2013).
Article CAS PubMed Google Scholar
Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).
Article CAS PubMed PubMed Central Google Scholar
Buxbaum, A. R., Haimovich, G. & Singer, R. H. In the right place at the right time: visualizing and understanding mRNA localization. Nat. Rev. Mol. Cell Biol. 16, 95–109 (2015).
Article CAS PubMed Google Scholar
Pichon, X. et al. RNA binding protein/RNA element interactions and the control of translation. Curr. Protein Pept. Sci. 13, 294–304 (2012).
Article CAS PubMed PubMed Central Google Scholar
Abil, Z., Denard, C. A. & Zhao, H. Modular assembly of designer PUF proteins for specific post-transcriptional regulation of endogenous RNA. J. Biol. Eng. 8, 7 (2014).
Article PubMed PubMed Central Google Scholar
Tischer, D. & Weiner, O. D. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol.y 15, 551–558 (2014).
Kawano, F., Shi, F. & Yazawa, M. Optogenetics: switching with red and blue. Nat. Chem. Biol. 13, 573–574 (2017).
Article CAS PubMed Google Scholar
Weber, A. M. et al. A blue light receptor that mediates RNA binding and translational regulation. Nat. Chem. Biol.y 15, 1085–1092 (2019).
Pilsl, S., Morgan, C., Choukeife, M., Moglich, A. & Mayer, G. Optoribogenetic control of regulatory RNA molecules. Nat. Commun. 11, 4825 (2020).
Article CAS PubMed PubMed Central Google Scholar
Renzl, C., Kakoti, A. & Mayer, G. Aptamer-mediated reversible transactivation of gene expression by light. Angew. Chem. Int. Ed. Engl. 59, 22414–22418 (2020).
Article CAS PubMed PubMed Central Google Scholar
Liu, R. et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat. Biotechnol. 40, 779–786 (2022).
Ranzani, A. T. et al. Light-dependent control of bacterial expression at the mRNA Level. ACS Synth. Biol. 11, 3482–3492 (2022).
Article CAS PubMed Google Scholar
Bubeck, F. et al. Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9. Nat. Methods 15, 924–927 (2018).
Article CAS PubMed Google Scholar
Knott, G. J. & Doudna, J. A. CRISPR-Cas guides the future of genetic engineering. Science 361, 866–869 (2018).
Article CAS PubMed PubMed Central Google Scholar
Liu, K. I. et al. A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing. Nat. Chem. Biol. 12, 980–987 (2016).
Article CAS PubMed Google Scholar
Setten, R. L., Rossi, J. J. & Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421–446 (2019).
Article CAS PubMed Google Scholar
Chen, Y. & Varani, G. Engineering RNA-binding proteins for biology. FEBS J. 280, 3734–3754 (2013).
Article CAS PubMed PubMed Central Google Scholar
Choudhury, R., Tsai, Y. S., Dominguez, D., Wang, Y. & Wang, Z. Engineering RNA endonucleases with customized sequence specificities. Nat. Commun. 3, 1147 (2012).
Cooke, A., Prigge, A., Opperman, L. & Wickens, M. Targeted translational regulation using the PUF protein family scaffold. Proc. Natl. Acad. Sci. USA 108, 15870–15875 (2011).
Article CAS PubMed PubMed Central Google Scholar
Abudayyeh, O. O. et al. RNA targeting with CRISPR-Cas13. Nature 550, 280–284 (2017).
Article PubMed PubMed Central Google Scholar
Batra, R. et al. Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell 170, 899–912.e10 (2017).
Article CAS PubMed PubMed Central Google Scholar
Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).
Article CAS PubMed PubMed Central Google Scholar
Chaulk, S. G. & MacMillan, A. M. Caged RNA: photo-control of a ribozyme reaction. Nucleic Acids Res. 26, 3173–3178 (1998).
Article CAS PubMed PubMed Central Google Scholar
Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).
Article CAS PubMed Google Scholar
Nihongaki, Y., Otabe, T., Ueda, Y. & Sato, M. A split CRISPR-Cpf1 platform for inducible genome editing and gene activation. Nat. Chem. Biol. 15, 882–888 (2019).
Article CAS PubMed Google Scholar
Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).
Article CAS PubMed Google Scholar
Nihongaki, Y. et al. CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat. Methods 14, 963–966 (2017).
Article CAS PubMed Google Scholar
Richter, F. et al. Engineering of temperature- and light-switchable Cas9 variants. Nucleic Acids Res. 44, 10003–10014 (2016).
CAS PubMed PubMed Central Google Scholar
Zhou, X. X. et al. A single-chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription. ACS Chem. Biol. 13, 443–448 (2018).
Article CAS PubMed Google Scholar
Ma, H. et al. CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat. Methods 15, 928–931 (2018).
Article CAS PubMed PubMed Central Google Scholar
Qin, P. et al. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat. Commun. 8, 14725 (2017).
Article CAS PubMed PubMed Central Google Scholar
Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).
Article CAS PubMed Google Scholar
Shao, S. et al. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res. 44, e86 (2016).
Article PubMed PubMed Central Google Scholar
Ma, H. et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat. Biotechnol. 34, 528–530 (2016).
Article CAS PubMed PubMed Central Google Scholar
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).
Article CAS PubMed PubMed Central Google Scholar
Boersma, S. et al. Multi-color single-molecule imaging uncovers extensive heterogeneity in mRNA decoding. Cell 178, 458–472.e19 (2019).
Article CAS PubMed PubMed Central Google Scholar
Nowak, C. M., Lawson, S., Zerez, M. & Bleris, L. Guide RNA engineering for versatile Cas9 functionality. Nucleic Acids Res. 44, 9555–9564 (2016).
Comments (0)