Xia, Y. Nanomaterials at work in biomedical research. Nat. Mater. 7, 758–760 (2008).
Article CAS PubMed Google Scholar
Gao, X. et al. Inflammation-free electrochemical in vivo sensing of dopamine with atomic-level engineered antioxidative single-atom catalyst. Nat. Commun. 15, 7915 (2024).
Article CAS PubMed PubMed Central Google Scholar
Zhang, R., Jiang, B., Fan, K., Gao, L. & Yan, X. Designing nanozymes for in vivo applications. Nat. Rev. Bioeng. 2, 849–868 (2024).
Wu, J. et al. Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation. Nat. Commun. 15, 6174 (2024).
Article CAS PubMed PubMed Central Google Scholar
Ye, T. et al. Protective effects of Pt-N-C single-atom nanozymes against myocardial ischemia–reperfusion injury. Nat. Commun. 15, 1682 (2024).
Article CAS PubMed PubMed Central Google Scholar
Zhen, W., Weichselbaum, R. R. & Lin, W. Nanoparticle-mediated radiotherapy remodels the tumor microenvironment to enhance antitumor efficacy. Adv. Mater. 35, 2206370 (2023).
Zhou, Q. et al. Tumor abnormality-oriented nanomedicine design. Chem. Rev. 123, 10920–10989 (2023).
Article CAS PubMed Google Scholar
Guo, Y., Hu, P. & Shi, J. Nanomedicine remodels tumor microenvironment for solid tumor immunotherapy. J. Am. Chem. Soc. 146, 10217–10233 (2024).
Article CAS PubMed Google Scholar
Wei, H. & Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013).
Article CAS PubMed Google Scholar
Wu, J. et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2019).
Article CAS PubMed Google Scholar
Wu, C. et al. A nonferrous ferroptosis-like strategy for antioxidant inhibition-synergized nanocatalytic tumor therapeutics. Sci. Adv. 7, eabj8833 (2021).
Article CAS PubMed PubMed Central Google Scholar
Yang, B., Chen, Y. & Shi, J. Nanocatalytic medicine. Adv. Mater. 31, 1901778 (2019).
Hou, M., Wang, L., Chen, Y. & Shi, J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8, 357 (2017).
Zhen, W. et al. Specific “unlocking” of a nanozyme-based butterfly effect to break the evolutionary fitness of chaotic tumors. Angew. Chem. Int. Ed. 59, 9491–9497 (2020).
Zhang, Y. et al. Chirality-dependent reprogramming of macrophages by chiral nanozymes. Angew. Chem. Int. Ed. 62, e202307076 (2023).
Yu, B., Wang, W., Sun, W., Jiang, C. & Lu, L. Defect engineering enables synergistic action of enzyme-mimicking active centers for high-efficiency tumor therapy. J. Am. Chem. Soc. 143, 8855–8865 (2021).
Article CAS PubMed Google Scholar
Li, M. et al. Structural design of single-atom catalysts for enhancing petrochemical catalytic reaction process. Adv. Mater. 36, 2313661 (2024).
Lei, Z. et al. Single metal atoms catalysts—promising candidates for next generation energy storage and conversion devices. EcoMat 4, e12186 (2022).
Chang, B., Zhang, L., Wu, S., Sun, Z. & Cheng, Z. Engineering single-atom catalysts toward biomedical applications. Chem. Soc. Rev. 51, 3688–3734 (2022).
Article CAS PubMed Google Scholar
Xia, Y., Sayed, M., Zhang, L., Cheng, B. & Yu, J. Single-atom heterogeneous photocatalysts. Chem Catal. 1, 1173–1214 (2021).
Xiong, P. et al. Cytotoxicity of metal-based nanoparticles: from mechanisms and methods of evaluation to pathological manifestations. Adv. Sci. 9, 2106049 (2022).
Yang, F., Deng, D., Pan, X., Fu, Q. & Bao, X. Understanding nano effects in catalysis. Natl. Sci. Rev. 2, 183–201 (2015).
Zhang, T. Single-atom catalysis: far beyond the matter of metal dispersion. Nano Lett. 21, 9835–9837 (2021).
Article CAS PubMed Google Scholar
Wang, D. & Zhao, Y. Single-atom engineering of metal–organic frameworks toward healthcare. Chem 7, 2635–2671 (2021).
Fei, H. et al. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 48, 5207–5241 (2019).
Article CAS PubMed Google Scholar
Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).
Article CAS PubMed PubMed Central Google Scholar
Sun, T. et al. SACs on non-carbon substrates: can they outperform for water splitting? Adv. Funct. Mater. 33, 2301526 (2023).
Song, W. et al. Review of carbon support coordination environments for single metal atom electrocatalysts (SACS). Adv. Mater. 36, 2301477 (2024).
Liu, J. C., Tang, Y., Wang, Y. G., Zhang, T. & Li, J. Theoretical understanding of the stability of single-atom catalysts. Natl. Sci. Rev. 5, 638–641 (2018).
Li, J. et al. Challenges and perspectives of single-atom-based catalysts for electrochemical reactions. JACS Au 3, 736–755 (2023).
Article CAS PubMed PubMed Central Google Scholar
Wang, A., Li, J. & Zhang, T. Hererogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).
Liu, Y. et al. Multi-enzyme co-expressed dual-atom nanozymes induce cascade immunogenic ferroptosis via activating interferon-γ and targeting arachidonic acid metabolism. J. Am. Chem. Soc. 145, 8965–8978 (2023).
Article CAS PubMed Google Scholar
Liu, Y. et al. Single-site nanozymes with a highly conjugated coordination structure for antitumor immunotherapy via cuproptosis and cascade-enhanced T lymphocyte activity. J. Am. Chem. Soc. 146, 3675–3688 (2024).
Article CAS PubMed Google Scholar
Shen, J. et al. Atomic engineering of single-atom nanozymes for biomedical applications. Adv. Mater. 36, 2313406 (2024).
Jiao, L. et al. When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. 59, 2565–2576 (2020).
Comments (0)