High-throughput multiplex voltage-clamp/current-clamp evaluation of acutely isolated neurons

Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).

Article  CAS  PubMed  Google Scholar 

Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

Article  CAS  PubMed  Google Scholar 

Sigworth, F. J. & Neher, E. Single Na+ channel currents observed in cultured rat muscle cells. Nature 287, 447–449 (1980).

Article  CAS  PubMed  Google Scholar 

Ghovanloo, M. -R., Dib-Hajj, S. D. & Waxman, S. G. The evolution of patch-clamp electrophysiology: robotic, multiplex, and dynamic. Mol. Pharmacol. https://doi.org/10.1124/MOLPHARM.124.000954 (2024).

Raju, T. N. The Nobel chronicles. 1991 Erwin Neher (b 1944) and Bert Sakman (b 1942). Lancet 355, 1732 (2000).

Article  CAS  PubMed  Google Scholar 

Ghovanloo, M. -R. et al. High-throughput combined voltage-clamp/current-clamp analysis of freshly isolated neurons. Cell Rep. Methods 3, 100385 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghovanloo, M. -R. et al. Sodium currents in naïve mouse dorsal root ganglion neurons: no major differences between sexes. Channels 18, 2289256 (2024).

Article  PubMed  Google Scholar 

Ghovanloo, M. -R. et al. Functionally-selective inhibition of threshold sodium currents and excitability in dorsal root ganglion neurons by cannabinol. Commun. Biol. 7, 1–17 (2024).

Article  Google Scholar 

Drenth, J. P. H. & Waxman, S. G. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J. Clin. Invest. 117, 3603–3609 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dib-Hajj, S. D., Yang, Y., Black, J. A. & Waxman, S. G. The NaV1.7 sodium channel: from molecule to man. Nat. Rev. Neurosci. 14, 49–62 (2013).

Article  CAS  PubMed  Google Scholar 

Dib-Hajj, S. D., Cummins, T. R., Black, J. A. & Waxman, S. G. Sodium channels in normal and pathological pain. Annu. Rev. Neurosci. 33, 325–347 (2010).

Article  CAS  PubMed  Google Scholar 

Cummins, T. R., Sheets, P. L. & Waxman, S. G. The roles of sodium channels in nociception: implications for mechanisms of pain. Pain 131, 243–257 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennett, D. L., Clark, X. A. J., Huang, J., Waxman, S. G. & Dib-Hajj, S. D. The role of voltage-gated sodium channels in pain signaling. Physiol. Rev. 99, 1079–1151 (2019).

Article  CAS  PubMed  Google Scholar 

Rush, A. M., Cummins, T. R. & Waxman, S. G. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J. Physiol. 579, 1–14 (2007).

Article  CAS  PubMed  Google Scholar 

Ramachandra, R., McGrew, S. Y., Baxter, J. C., Howard, J. R. & Elmslie, K. S. NaV1.8 channels are expressed in large, as well as small, diameter sensory afferent neurons. Channels 7, 34–37 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shields, S. D. et al. NaV1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain 153, 2017–2030 (2012).

Article  CAS  PubMed  Google Scholar 

Ghovanloo, M. -R., Aimar, K., Ghadiry-Tavi, R., Yu, A. & Ruben, P. C. Physiology and pathophysiology of sodium channel inactivation. Curr. Top. Membr. 78, 479–509 (2016).

Article  CAS  PubMed  Google Scholar 

Catterall, W. A. Voltage-gated sodium channels at 60: structure, function and pathophysiology. J. Physiol. 590, 2577–2589 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghovanloo, M. -R. & Ruben, P. C. Cannabidiol and sodium channel pharmacology: general overview, mechanism, and clinical implications. Neuroscientist 28, 318–334 (2022).

Article  CAS  PubMed  Google Scholar 

Fouda, M. A., Ghovanloo, M. -R. & Ruben, P. C. Late sodium current: incomplete inactivation triggers seizures, myotonias, arrhythmias, and pain syndromes. J. Physiol. 600, 2835–2851 (2022).

Article  CAS  PubMed  Google Scholar 

He, B. & Soderlund, D. M. Functional expression of rat NaV1.6 voltage-gated sodium channels in HEK293 cells: modulation by the auxiliary β1 subunit. PLoS ONE 9, e85188 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Huang, J. et al. Sodium channel NaV1.9 mutations associated with insensitivity to pain dampen neuronal excitability. J. Clin. Invest. 127, 2805–2814 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Li, G. et al. Positive shift of NaV1.8 current inactivation curve in injured neurons causes neuropathic pain following chronic constriction injury. Mol. Med. Rep. 12, 3583–3590 (2015).

Article  CAS  PubMed  Google Scholar 

Ghovanloo, M. -R. et al. Inhibition of sodium conductance by cannabigerol contributes to a reduction of dorsal root ganglion neuron excitability. Br. J. Pharmacol. 179, 4010–4030 (2022).

Article  CAS  PubMed  Google Scholar 

Ghovanloo, M. -R., Peters, C. H. & Ruben, P. C. Effects of acidosis on neuronal voltage-gated sodium channels: NaV1.1 and NaV1.3. Channels 12, 367–377 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Limón, A., Pérez, C., Vega, R. & Soto, E. Ca2+-activated K+-current density is correlated with soma size in rat vestibular-afferent neurons in culture. J. Neurophysiol. 94, 3751–3761 (2005).

Article  PubMed  Google Scholar 

Vandewauw, I., Owsianik, G. & Voets, T. Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse. BMC Neurosci. 14, 21 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mis, M. A. et al. Resilience to pain: a peripheral component identified using induced pluripotent stem cells and dynamic clamp. J. Neurosci. 39, 382–392 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan, J. -H. et al. KCNQ variants and pain modulation: a missense variant in KV7.3 contributes to pain resilience. Brain Commun. 3, fcab212 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, J. et al. Severe deficiency of the voltage-gated sodium channel NaV1.2 elevates neuronal excitability in adult mice. Cell Rep. 36, 109495 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, C. et al. Human NaV1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons. J. Neurophysiol. 113, 3172–3185 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cummins, T. R. et al. NaV1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J. Neurosci. 21, 5952–5961 (2001).

Comments (0)

No login
gif