The relationship between anthropometric indices and the presence of hypertension in an Iranian population sample using data mining algorithms

Lamirault G, Artifoni M, Daniel M, Barber-Chamoux N, Nantes University Hospital Working Group On H. Resistant Hypertension: Novel Insights. Curr Hypertens Rev. 2020;16:61–72.

Article  PubMed  Google Scholar 

Tayefi M, Shabani N, Saberi-Karimian M, Oladi M, Mouhebati M, Farjami Z, et al. Systolic and diastolic blood pressure percentiles by age and gender in Northeastern Iran. J Am Soc Hypertension. 2018;12:e85–91.

Article  Google Scholar 

Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16:223–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paudel P, Chalise S, Neupane DR, Adhikari N, Paudel S, Dangi NB. Prevalence of Hypertension in a Community. JNMA J Nepal Med Assoc. 2020;58:1011–7.

PubMed  PubMed Central  Google Scholar 

James WPT. The epidemiology of obesity: the size of the problem. J Intern Med. 2008;263:336–52.

Article  CAS  PubMed  Google Scholar 

Wiklund P, Toss F, Weinehall L, Hallmans G, Franks PW, Nordstrom A, et al. Abdominal and gynoid fat mass are associated with cardiovascular risk factors in men and women. J Clin Endocrinol Metab. 2008;93:4360–6.

Article  CAS  PubMed  Google Scholar 

Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome. In: Engin A, Engin A, editors. Obesity and Lipotoxicity. Advances in Experimental Medicine and Biology, vol 960. Springer, Cham; 2017. https://doi.org/10.1007/978-3-319-48382-5_1.

Wang C, Fu W, Cao S, Xu H, Tian Q, Gan Y, et al. Association of adiposity indicators with hypertension among Chinese adults. Nutr Metab Cardiovasc Dis. 2021;31:1391–400.

Article  PubMed  Google Scholar 

Moosaie F, Fatemi Abhari SM, Deravi N, Karimi Behnagh A, Esteghamati S, Dehghani Firouzabadi F, et al. Waist-to-height ratio is a more accurate tool for predicting hypertension than waist-to-hip circumference and BMI in patients with type 2 diabetes: a prospective study. Front Public Health. 2021;9:726288.

Article  PubMed  PubMed Central  Google Scholar 

Calderón-García JF, Roncero-Martín R, Rico-Martín S, De Nicolás-Jiménez JM, López-Espuela F, Santano-Mogena E, et al. Effectiveness of body roundness index (BRI) and a body shape index (ABSI) in predicting hypertension: a systematic review and meta-analysis of observational studies. Int J Environ Res Public Health. 2021;18:11607.

Article  PubMed  PubMed Central  Google Scholar 

Abolhasani M, Maghbouli N, Karbalai Saleh S, Aghsaeifar Z, Sazgara F, Tahmasebi M, et al. Which anthropometric and metabolic index is superior in hypertension prediction among overweight/obese adults? Integr Blood Press Control. 2021;14:153–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Sun G, Li Y. A prospective cohort study on the association of lean body mass estimated by mid-upper arm muscle circumference with hypertension risk in Chinese residents. J Clin Hypertens. 2022;24:329–38.

Article  Google Scholar 

Mansoori A, Farizani Gohari NS, Etemad L, Poudineh M, Ahari RK, Mohammadyari F, et al. White blood cell and platelet distribution widths are associated with hypertension: data mining approaches. Hypertens Res. 2023. https://doi.org/10.1038/s41440-023-01472-y. Epub ahead of print.

Chaikijurajai T, Laffin LJ, Tang WHW. Artificial intelligence and hypertension: recent advances and future outlook. Am J Hypertens. 2020;33:967–74.

Article  PubMed  PubMed Central  Google Scholar 

Chang W, Liu Y, Xiao Y, Yuan X, Xu X, Zhang S, et al. A machine-learning-based prediction method for hypertension outcomes based on medical data. Diagnostics. 2019;9:178.

Article  PubMed  PubMed Central  Google Scholar 

Leha A, Hellenkamp K, Unsöld B, Mushemi-Blake S, Shah AM, Hasenfuß G, et al. A machine learning approach for the prediction of pulmonary hypertension. PLoS One. 2019;14:e0224453.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghayour-Mobarhan M, Moohebati M, Esmaily H, Ebrahimi M, Parizadeh SM, Heidari-Bakavoli AR, et al. Mashhad stroke and heart atherosclerotic disorder (MASHAD) study: design, baseline characteristics and 10-year cardiovascular risk estimation. Int J Public Health. 2015;60:561–72.

Article  PubMed  Google Scholar 

Muntner P, Shimbo D, Carey RM, Charleston JB, Gaillard T, Misra S, et al. Measurement of blood pressure in humans: a scientific statement from the American Heart Association. Hypertension 2019;73:e35–66.

Article  CAS  PubMed  Google Scholar 

American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care. 2018;41:S13–s27.

Article  Google Scholar 

World Health Organization. Regional Office for the Western P. The Asia-Pacific perspective : redefining obesity and its treatment. Sydney: Health Communications Australia; 2000.

Ashwell M, Gibson S. Waist to height ratio is a simple and effective obesity screening tool for cardiovascular risk factors: analysis of data from the British National Diet And Nutrition Survey of adults aged 19-64 years. Obes Facts. 2009;2:97–103.

Article  PubMed  PubMed Central  Google Scholar 

Thomas DM, Bredlau C, Bosy‐Westphal A, Mueller M, Shen W, Gallagher D, et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity. 2013;21:2264–71.

Article  PubMed  Google Scholar 

Bergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, et al. A better index of body adiposity. Obesity (Silver Spring). 2011;19:1083–9. https://doi.org/10.1038/oby.2011.38. Epub 2011 Mar 3.

Krakauer NY, Krakauer JC. A new body shape index predicts mortality hazard independently of body mass index. PloS one. 2012;7:e39504.

Article  CAS  PubMed  PubMed Central  Google Scholar 

David W, Hosmer Jr. SL, Rodney X. Sturdivant. Applied logistic regression. 3rd, editor. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2013.

Hooley JM, Teasdale JD. Predictors of relapse in unipolar depressives: expressed emotion, marital distress, and perceived criticism. J Abnorm Psychol. 1989;98:229.

Article  CAS  PubMed  Google Scholar 

Mohammadi F, Pourzamani H, Karimi H, Mohammadi M, Mohammadi M, Ardalan N, et al. Artificial neural network and logistic regression modelling to characterize COVID-19 infected patients in local areas of Iran. Biomed J. 2021;44:304–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong Y, editor. The analysis of cases based on decision tree. In: 2016 7th IEEE international conference on software engineering and service science (ICSESS). Beijing, China: IEEE; 2016.

Aghasizadeh M, Samadi S, Sahebkar A, Miri‐Moghaddam E, Esmaily H, Souktanloo M, et al. Serum HDL cholesterol uptake capacity in subjects from the MASHAD cohort study: Its value in determining the risk of cardiovascular endpoints. J Clin Lab Anal. 2021;35:e23770.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saberi‐Karimian M, Safarian‐Bana H, Mohammadzadeh E, Kazemi T, Mansoori A, Ghazizadeh H, et al. A pilot study of the effects of crocin on high‐density lipoprotein cholesterol uptake capacity in patients with metabolic syndrome: a randomized clinical trial. BioFactors 2021;47:1032–41.

Article  PubMed  Google Scholar 

Mansoori A, Sahranavard T, Hosseini ZS, Soflaei SS, Emrani N, Nazar E, et al. Prediction of type 2 diabetes mellitus using hematological factors based on machine learning approaches: a cohort study analysis. Sci Rep. 2023;13:1–11.

Article  Google Scholar 

Saberi‐Karimian M, Mansoori A, Bajgiran MM, Hosseini ZS, Kiyoumarsioskouei A, Rad ES, et al. Data mining approaches for type 2 diabetes mellitus prediction using anthropometric measurements. J Clin Lab Anal. 2023;37:e24798.

Article  PubMed  Google Scholar 

Ghazizadeh H, Shakour N, Ghoflchi S, Mansoori A, Saberi-Karimiam M, Rashidmayvan M, et al. Use of data mining approaches to explore the association between type 2 diabetes mellitus with SARS-CoV-2. BMC Pulm Med. 2023;23:1–14.

Article  Google Scholar 

Mansoori A, Hosseini ZS, Ahari RK, Poudineh M, Rad ES, Zo MM, et al. Development of data mining algorithms for identifying the best anthropometric predictors for cardiovascular disease: MASHAD cohort study. High Blood Press Cardiovasc Prev 2023;30:243–53.

Article  PubMed  Google Scholar 

Wang H, Tang J, Wu M, Wang X, Zhang T. Application of machine learning missing data imputation techniques in clinical decision making: taking the discharge assessment of patients with spontaneous supratentorial intracerebral hemorrhage as an example. BMC Med Inform Decis Mak. 2022;22:1–14.

Article  Google Scholar 

Mohammadi M, Mansoori A. A projection neural network for identifying copy number variants. IEEE J Biomed health Inform. 2018;23:2182–8.

Article  PubMed  Google Scholar 

Saberi-Karimian M, Khorasanchi Z, Ghazizadeh H, Tayefi M, Saffar S, Ferns GA, et al. Potential value and impact of data mining and machine learning in clinical diagnostics. Crit Rev Clin Lab Sci. 2021;58:275–96.

Article  PubMed  Google Scholar 

Yang J, Wang F, Han X, Yuan J, Yao P, Liang Y, et al. Different anthropometric indices and incident risk of hypertension in elderly population: a prospective cohort study. Zhonghua Yu Fang Yi Xue Za Zhi. 2019;53:272–8.

CAS  PubMed  Google Scholar 

Khanna D, Rehman A. Pathophysiology of obesity. StatPearls. Treasure Island (FL): StatPearls Publishing LLC.; 2022.

Zhang Z, Shi D, Zhang Q, Wang S, Liu K, Meng Q, et al. Visceral adiposity index (VAI), a powerful predictor of incident hypertension in prehypertensives. Intern Emerg Med. 2018;13:509–16.

Article  PubMed  Google Scholar 

Gómez-Ambrosi J, Silva C, Galofré J, Escalada J, Santos S, Millán D, et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes. 2012;36:286–94.

Article  Google Scholar 

Rothman KJ. BMI-related errors in the measurement of obesity. Int J Obes. 2008;32:S56–9.

Article  Google Scholar 

Bigaard J, Frederiksen K, Tjønneland A, Thomsen BL, Overvad K, Heitmann BL, et al. Body fat and fat‐free mass and all‐cause mortality. Obes Res. 2004;12:1042–9.

Article  PubMed  Google Scholar 

Li M, Lin J, Liang S, Huang S, Wen Z, Mo Z. Predicted fat mass, lean body mass, and risk of hypertension: results from a Chinese male cohort study. Obes Facts. 2022;15:638–47.

Article  CAS 

Comments (0)

No login
gif