Exploration of potential therapeutic target genes for preeclampsia through genetic analysis

Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res. 2019;124:1094–112.

CAS  PubMed  Google Scholar 

Jung E, Romero R, Yeo L, Gomez-Lopez N, Chaemsaithong P, Jaovisidha A, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226:S844–66.

CAS  PubMed  PubMed Central  Google Scholar 

Turbeville HR, Sasser JM. Preeclampsia beyond pregnancy: long-term consequences for mother and child. Am J Physiol Renal Physiol. 2020;318:F1315–26.

CAS  PubMed  PubMed Central  Google Scholar 

Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15:275–89.

PubMed  PubMed Central  Google Scholar 

Sakowicz A. The targeting of nuclear factor Kappa B by drugs adopted for the prevention and treatment of preeclampsia. Int J Mol Sci. 2022;23:2881.

CAS  PubMed  PubMed Central  Google Scholar 

Teng YQ, Du T, Tian R, Liu ZY, Zhang SY. [Genetics of coronary artery disease: research progress and prospect of clinical translation]. Zhonghua Xin Xue Guan Bing Za Zhi. 2021;49:733–8.

CAS  PubMed  Google Scholar 

Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol. 2016;27:3253–65.

PubMed  PubMed Central  Google Scholar 

Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, Engmann J, et al. The druggable genome and support for target identification and validation in drug development. Sci Transl Med. 2017;9:eaag1166.

PubMed  PubMed Central  Google Scholar 

Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, VanderWeele TJ, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ. 2021;375:n2233.

PubMed  PubMed Central  Google Scholar 

Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–18.

CAS  PubMed  PubMed Central  Google Scholar 

Tyrmi JS, Kaartokallio T, Lokki AI, Jääskeläinen T, Kortelainen E, Ruotsalainen S, et al. Genetic risk factors associated with preeclampsia and hypertensive disorders of pregnancy. JAMA Cardiol. 2023;8:674–83.

PubMed  PubMed Central  Google Scholar 

Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7.

CAS  PubMed  Google Scholar 

Zhou W, Wang H, Yang Y, Guo F, Yu B, Su Z. Trophoblast cell subtypes and dysfunction in the placenta of individuals with preeclampsia revealed by single‑cell RNA sequencing. Mol Cells. 2022;45:317–28.

CAS  PubMed  PubMed Central  Google Scholar 

Qi G, Chatterjee N. Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects. Nat Commun. 2019;10:1941.

PubMed  PubMed Central  Google Scholar 

Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.

PubMed  PubMed Central  Google Scholar 

Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through egger regression. Int J Epidemiol. 2015;44:512–25.

PubMed  PubMed Central  Google Scholar 

de Klerk JA, Beulens JWJ, Mei H, Bijkerk R, van Zonneveld AJ, Koivula RW, et al. Altered blood gene expression in the obesity-related type 2 diabetes cluster may be causally involved in lipid metabolism: a Mendelian randomisation study. Diabetologia. 2023;66:1057–70.

PubMed  PubMed Central  Google Scholar 

Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40:755–64.

PubMed  Google Scholar 

Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

CAS  PubMed  PubMed Central  Google Scholar 

Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10:e1004383.

PubMed  PubMed Central  Google Scholar 

Røsok O, Pedeutour F, Ree AH, Aasheim HC. Identification and characterization of TESK2, a novel member of the LIMK/TESK family of protein kinases, predominantly expressed in testis. Genomics. 1999;61:44–54.

PubMed  Google Scholar 

Ridley AJ. Rho GTPases and cell migration. J Cell Sci. 2001;114:2713–22.

CAS  PubMed  Google Scholar 

Yang Y, Chang C, Baiyin B, Liu Z, Guo L, Zhou L, et al. Blood transcriptome analysis of beef cow with different parity revealed candidate genes and gene networks regulating the postpartum diseases. Genes. 2022;13:1671.

PubMed  PubMed Central  Google Scholar 

Burton GJ, Redman CW, Roberts JM, Moffett A. Pre-eclampsia: pathophysiology and clinical implications. BMJ. 2019;366:2381.

Google Scholar 

Joshi N, Sahay A, Mane A, Sundrani D, Randhir K, Wagh G, et al. Altered expression of nutrient transporters in syncytiotrophoblast membranes in preeclampsia placentae. Placenta. 2023;139:181–9.

CAS  PubMed  Google Scholar 

Lai SC, Nakayama Y, Sequeira JM, Wlodarczyk BJ, Cabrera RM, Finnell RH, et al. The transcobalamin receptor knockout mouse: a model for vitamin B12 deficiency in the central nervous system. FASEB J. 2013;27:2468–75.

CAS  PubMed  PubMed Central  Google Scholar 

Abuyaman O, Andreasen BH, Kronborg C, Vittinghus E, Nexo E. The soluble receptor for vitamin B12 uptake (sCD320) increases during pregnancy and occurs in higher concentration in urine than in serum. PLoS ONE. 2013;8:e73110.

CAS  PubMed  PubMed Central  Google Scholar 

Abuyaman O, Torring N, Obeid R, Nexo E. First trimester serum levels of the soluble transcobalamin receptor, holo-transcobalamin, and total transcobalamin in relation to preeclampsia risk. Scand J Clin Lab Invest. 2016;76:641–4.

CAS  PubMed  Google Scholar 

Xu Q, Jia Y, Wang Y, Yang P, Sun L, Liu Y, et al. The bidirectional association between frailty index and cardiovascular disease: a Mendelian randomization study. Nutr Metab Cardiovasc Dis. 2024;34:624–32.

PubMed  Google Scholar 

Chen K, Xiao H, Zeng J, Yu G, Zhou H, Huang C, et al. Alternative splicing of EZH2 pre-mRNA by SF3B3 contributes to the tumorigenic potential of renal cancer. Clin Cancer Res. 2017;23:3428–41.

CAS  PubMed  Google Scholar 

Gökmen-Polar Y, Neelamraju Y, Goswami CP, Gu X, Nallamothu G, Janga SC, et al. Expression levels of SF3B3 correlate with prognosis and endocrine resistance in estrogen receptor-positive breast cancer. Mod Pathol. 2015;28:677–85.

PubMed  Google Scholar 

Li DT, Habtemichael EN, Bogan JS. Vasopressin inactivation: role of insulin-regulated aminopeptidase. Vitam Horm. 2020;113:101–28.

CAS  PubMed  Google Scholar 

Khaliq OP, Konoshita T, Moodley J, Naicker T. The role of LNPEP and ANPEP gene polymorphisms in the pathogenesis of pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 2020;252:160–5.

CAS  PubMed  Google Scholar 

Aihara K, Kuroda S, Kanayama N, Matsuyama S, Tanizawa K, Horie M. A neuron-specific EGF family protein, NELL2, promotes survival of neurons through mitogen-activated protein kinases. Brain Res Mol Brain Res. 2003;116:86–93.

CAS  PubMed  Google Scholar 

Li M, Li X, Liu C, Han J, Han X, Wang K, et al. Genome-wide association study reveals the candidate genes for reproduction traits in Yunong black pigs. Anim Genet. 2023;54:403–7.

CAS  PubMed  Google Scholar 

Võsa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, Zeng B, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet. 2021;53:1300–10.

PubMed  PubMed Central  Google Scholar 

Kim-Hellmuth S, Aguet F, Oliva M, Muñoz-Aguirre M, Kasela S, Wucher V, et al. Cell type-specific genetic regulation of gene expression across human tissues. Science. 2020;369:eaaz8528.

CAS  PubMed  PubMed Central 

Comments (0)

No login
gif