Folmes, C. D., Dzeja, P. P., Nelson, T. J. & Terzic, A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11, 596–606 (2012).
Article PubMed PubMed Central Google Scholar
Liu, K. et al. Cellular metabolism and homeostasis in pluripotency regulation. Protein Cell 11, 630–640 (2020).
Article PubMed PubMed Central Google Scholar
Meacham, C. E., DeVilbiss, A. W. & Morrison, S. J. Metabolic regulation of somatic stem cells in vivo. Nat. Rev. Mol. Cell Biol. 23, 428–443 (2022).
Jin, Y. et al. Application of stem cells in regeneration medicine. MedComm 4, e291 (2023).
Article PubMed PubMed Central Google Scholar
Seydel, C. Single-cell metabolomics hits its stride. Nat. Methods 18, 1452–1456 (2021).
Chandel, N. S. Carbohydrate metabolism. Cold Spring Harb. Perspect. Biol. 13, a040568 (2021).
Article PubMed PubMed Central Google Scholar
Chandel, N. S., Jasper, H., Ho, T. T. & Passegué, E. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat. Cell Biol. 18, 823–832 (2016).
Cliff, T. S. et al. MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux. Cell Stem Cell 21, 502–516 e9 (2017).
Article PubMed PubMed Central Google Scholar
Kikani, C. & Xiao, M. Glutamine metabolism co‐ordinates the cell‐cycle with cell fate in stem cells. FASEB J. 36, 629–642.e8 (2022).
Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).
Pladevall-Morera, D. & Zylicz, J. J. Chromatin as a sensor of metabolic changes during early development. Front. Cell Dev. Biol. 10, 1014498 (2022).
Article PubMed PubMed Central Google Scholar
Baksh, S. C. et al. Extracellular serine controls epidermal stem cell fate and tumour initiation. Nat. Cell Biol. 22, 779–790 (2020).
Article PubMed PubMed Central Google Scholar
Samanta, D. & Semenza, G. L. Serine synthesis helps hypoxic cancer stem cells regulate redox. Cancer Res. 76, 6458–6462 (2016).
van Gastel, N. & Carmeliet, G. Metabolic regulation of skeletal cell fate and function in physiology and disease. Nat. Metab. 3, 11–20 (2021).
Ning, K. et al. Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation. Mol. Metab. 58, 101450 (2022).
Article PubMed PubMed Central Google Scholar
Gu, W. et al. Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell 19, 476–490 (2016).
Article PubMed PubMed Central Google Scholar
Liu, W. & Chen, G. Regulation of energy metabolism in human pluripotent stem cells. Cell Mol. Life Sci. 78, 8097–8108 (2021).
Nakamura-Ishizu, A., Ito, K. & Suda, T. Hematopoietic stem cell metabolism during development and aging. Dev. Cell 54, 239–255 (2020).
Article PubMed PubMed Central Google Scholar
van Gastel, N. & Scadden, D. T. Young haematopoietic stem cells are picky eaters. Cell Res. 31, 377–378 (2021).
Article PubMed PubMed Central Google Scholar
Chen, Z., Guo, Q., Song, G. & Hou, Y. Molecular regulation of hematopoietic stem cell quiescence. Cell Mol. Life Sci. 79, 218 (2022).
Ding, H. et al. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am. J. Physiol. Ren. Physiol. 313, F561–F575 (2017).
Rodríguez-Colman, M. et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543, 424–427 (2017).
Shyh-Chang, N., Daley, G. Q. & Cantley, L. C. Stem cell metabolism in tissue development and aging. Development 140, 2535–2547 (2013).
Article PubMed PubMed Central Google Scholar
Pascale, R. M. et al. The Warburg effect 97 years after its discovery. Cancers 12, 2819 (2020).
Article PubMed PubMed Central Google Scholar
Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).
Flores, A. et al. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat. Cell Biol. 19, 1017–1026 (2017).
Bensard, C. L. et al. Regulation of tumor initiation by the mitochondrial pyruvate carrier. Cell Metab. 31, 284–300 e7 (2020).
Li, C. et al. Loss of sphingosine kinase 2 promotes the expansion of hematopoietic stem cells by improving their metabolic fitness. Blood 140, 1686–1701 (2022).
Wang, Z. et al. Enhanced glycolysis-mediated energy production in alveolar stem cells is required for alveolar regeneration. Cell Stem Cell 30, 1028–1042 e7 (2023).
Ryall, J. G. et al. The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16, 171–183 (2015).
Article PubMed PubMed Central Google Scholar
Forte, D. et al. Bone marrow mesenchymal stem cells support acute myeloid leukemia bioenergetics and enhance antioxidant defense and escape from chemotherapy. Cell Metab. 32, 829–843 e9 (2020).
Article PubMed PubMed Central Google Scholar
Yu, W. M. et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12, 62–74 (2013).
Article PubMed PubMed Central Google Scholar
Lin, C. et al. Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration. Nat. Commun. 13, 6869 (2022).
Article PubMed PubMed Central Google Scholar
Pattappa, G., Heywood, H. K., de Bruijn, J. D. & Lee, D. A. The metabolism of human mesenchymal stem cells during proliferation and differentiation. J. Cell Physiol. 226, 2562–2570 (2011).
Huang, T. et al. Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Sci. Adv. 7, eabj0534 (2021).
Article PubMed PubMed Central Google Scholar
Sivanand, S., Viney, I. & Wellen, K. E. Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem. Sci. 43, 61–74 (2018).
Martinez-Reyes, I., Chandel, N. S. & Mitochondrial, T. C. A. cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).
Article PubMed PubMed Central Google Scholar
Serefidou, M., Venkatasubramani, A. V. & Imhof, A. The impact of one carbon metabolism on histone methylation. Front Genet 10, 764 (2019).
Article PubMed PubMed Central Google Scholar
Xie, N. et al. NAD(+) metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target Ther. 5, 227 (2020).
Article PubMed PubMed Central Google Scholar
Wang, H. et al. Nicotinamide mononucleotide supplementation improves mitochondrial dysfunction and rescues cellular senescence by NAD(+)/Sirt3 pathway in mesenchymal stem cells. Int. J. Mol. Sci. 23, 14739 (2022).
Article PubMed PubMed Central Google Scholar
Pi, C. et al. Nicotinamide phosphoribosyltransferase postpones rat bone marrow mesenchymal stem cell senescence by mediating NAD(+)-Sirt1 signaling. Aging 11, 3505–3522 (2019).
Comments (0)