Álvarez-Carretero S, Kapli P, Yang Z. Beginner’s guide on the use of PAML to detect positive selection. Mol Biol Evolut. 2023;40(4):msad041. https://doi.org/10.1093/molbev/msad041.
Andrews S, Krueger C, Mellado-Lopez M, Hemberger M, Dean W, Perez-Garcia V, Hanna CW. Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B. Nat Commun. 2023;14(1):371. https://doi.org/10.1038/s41467-023-36019-9.
Article CAS PubMed PubMed Central Google Scholar
Barau J, Teissandier A, Zamudio N, Roy S, Nalesso V, Hérault Y, Guillou F, Bourc’his D. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science. 2016;354(6314):909–12. https://doi.org/10.1126/science.aah5143.
Article CAS PubMed Google Scholar
Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature. 2004;431(7004):96–9. https://doi.org/10.1038/nature02886.
Article CAS PubMed Google Scholar
Bourc’his D, Xu G-L, Lin C-S, Bollman B, Bestor Timothy H. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294(5551):2536–9. https://doi.org/10.1126/science.1065848.
Article CAS PubMed Google Scholar
Brind’Amour J, Kobayashi H, Richard Albert J, Shirane K, Sakashita A, Kamio A, Bogutz A, Koike T, Karimi MM, Lefebvre L, Kono T, Lorincz MC. LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation. Nat Commun. 2018;9(1):3331–3331. https://doi.org/10.1038/s41467-018-05841-x.
Article CAS PubMed PubMed Central Google Scholar
Carter AM. Animal models of human pregnancy and placentation: alternatives to the mouse. Reproduction. 2020;160(6):R129–43. https://doi.org/10.1530/REP-20-0354.
Article CAS PubMed Google Scholar
Chen Z, Zhang Y. Role of mammalian DNA methyltransferases in development. Annu Rev Biochem. 2020;89(1):135–58. https://doi.org/10.1146/annurev-biochem-103019-102815.
Article CAS PubMed Google Scholar
Chitwood JL, Burruel VR, Halstead MM, Meyers SA, Ross PJ. Transcriptome profiling of individual rhesus macaque oocytes and preimplantation embryos†. Biol Reprod. 2017;97(3):353–64. https://doi.org/10.1093/biolre/iox114.
Article PubMed PubMed Central Google Scholar
Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E, Chen T. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature. 2009;461(7262):415–8. https://doi.org/10.1038/nature08315.
Article CAS PubMed Google Scholar
Clarke HJ, Vieux K-F. Epigenetic inheritance through the female germ-line: the known, the unknown, and the possible. Semin Cell Dev Biol. 2015;43:106–16. https://doi.org/10.1016/j.semcdb.2015.07.003.
Dang Y, Zhu L, Yuan P, Liu Q, Guo Q, Chen X, Gao S, Liu X, Ji S, Yuan Y, Lian Y, Li R, Yan L, Wong CCL, Qiao J. Functional profiling of stage-specific proteome and translational transition across human pre-implantation embryo development at a single-cell resolution. Cell Discov. 2023;9(1):10. https://doi.org/10.1038/s41421-022-00491-2.
Article CAS PubMed PubMed Central Google Scholar
Demond H, Kelsey G. The enigma of DNA methylation in the mammalian oocyte [version 1; peer review: 4 approved]. F1000 Res. 2020;9:146. https://doi.org/10.12688/f1000research.21513.1.
Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, Jeltsch A. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation*. J Biol Chem. 2010;285(34):26114–20. https://doi.org/10.1074/jbc.M109.089433.
Article CAS PubMed PubMed Central Google Scholar
Duymich CE, Charlet J, Yang X, Jones PA, Liang G. DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nat Commun. 2016;7(1):11453. https://doi.org/10.1038/ncomms11453.
Article PubMed PubMed Central Google Scholar
Emperle M, Bangalore DM, Adam S, Kunert S, Heil HS, Heinze KG, Bashtrykov P, Tessmer I, Jeltsch A. Structural and biochemical insight into the mechanism of dual CpG site binding and methylation by the DNMT3A DNA methyltransferase. Nucleic Acids Res. 2021;49(14):8294–308. https://doi.org/10.1093/nar/gkab600.
Article CAS PubMed PubMed Central Google Scholar
Franke V, Ganesh S, Karlic R, Malik R, Pasulka J, Horvat F, Kuzman M, Fulka H, Cernohorska M, Urbanova J, Svobodova E, Ma J, Suzuki Y, Aoki F, Schultz RM, Vlahovicek K, Svoboda P. Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes. Genome Res. 2017. https://doi.org/10.1101/gr.216150.116.
Article PubMed PubMed Central Google Scholar
Gahurova L, Tomizawa S-I, Smallwood SA, Stewart-Morgan KR, Saadeh H, Kim J, Andrews SR, Chen T, Kelsey G. Transcription and chromatin determinants of de novo DNA methylation timing in oocytes. Epigenet Chromatin. 2017;10:25–25. https://doi.org/10.1186/s13072-017-0133-5.
Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update. 2018;24(5):556–76. https://doi.org/10.1093/humupd/dmy021.
Article CAS PubMed PubMed Central Google Scholar
Hanna CW, Huang J, Belton C, Reinhardt S, Dahl A, Andrews S, Stewart AF, Kranz A, Kelsey G. Loss of histone methyltransferase SETD1B in oogenesis results in the redistribution of genomic histone 3 lysine 4 trimethylation. Nucleic Acids Res. 2022;50(4):1993–2004. https://doi.org/10.1093/nar/gkac051.
Article CAS PubMed PubMed Central Google Scholar
Hanna CW, Taudt A, Huang J, Gahurova L, Kranz A, Andrews S, Dean W, Stewart AF, Colomé-Tatché M, Kelsey G. MLL2 conveys transcription-independent H3K4 trimethylation in oocytes. Nat Struct Mol Biol. 2018;25(1):73–82. https://doi.org/10.1038/s41594-017-0013-5.
Article CAS PubMed Google Scholar
Inoue A. Noncanonical imprinting: intergenerational epigenetic inheritance mediated by Polycomb complexes. Curr Opin Genet Dev. 2023;78:102015. https://doi.org/10.1016/j.gde.2022.102015.
Article CAS PubMed Google Scholar
Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature. 2007;449(7159):248–51. https://doi.org/10.1038/nature06146.
Article CAS PubMed PubMed Central Google Scholar
Jin Y, Tam OH, Paniagua E, Hammell M. TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics. 2015;31(22):3593–9. https://doi.org/10.1093/bioinformatics/btv422.
Article CAS PubMed PubMed Central Google Scholar
Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature. 2004;429(6994):900–3. https://doi.org/10.1038/nature02633.
Article CAS PubMed Google Scholar
Kibe K, Shirane K, Ohishi H, Uemura S, Toh H, Sasaki H. The DNMT3A PWWP domain is essential for the normal DNA methylation landscape in mouse somatic cells and oocytes. PLoS Genet. 2021;17(5):e1009570. https://doi.org/10.1371/journal.pgen.1009570.
Article CAS PubMed PubMed Central Google Scholar
Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K, Hata K, Sotomaru Y, Suzuki Y, Kono T. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet. 2012;8(1):e1002440. https://doi.org/10.1371/journal.pgen.1002440.
Article CAS PubMed PubMed Central Google Scholar
Li J-Y, Pu M-T, Hirasawa R, Li B-Z, Huang Y-N, Zeng R, Jing N-H, Chen T, Li E, Sasaki H, Xu G-L. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol Cell Biol. 2007;27(24):8748–59. https://doi.org/10.1128/MCB.01380-07.
Article CAS PubMed PubMed Central Google Scholar
Lu X, Zhang Y, Wang L, Wang L, Wang H, Xu Q, Xiang Y, Chen C, Kong F, Xia W, Lin Z, Ma S, Liu L, Wang X, Ni H, Li W, Guo Y, Xie W. Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting. Sci Adv. 2021;7(48):eabi6178. https://doi.org/10.1126/sciadv.abi6178.
Article CAS PubMed PubMed Central Google Scholar
Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022. https://doi.org/10.1093/nar/gkac240.
Comments (0)