Sodium butyrate alleviates R97-116 peptide-induced myasthenia gravis in mice by improving the gut microbiota and modulating immune response

Soltys J, Wu X. Complement regulatory protein crry deficiency contributes to the antigen specific recall response in experimental autoimmune myasthenia gravis. J Inflamm (London England). 2012;9:20.

Article  CAS  Google Scholar 

Lazaridis K, Tzartos SJ. Autoantibody specificities in myasthenia gravis; implications for improved diagnostics and therapeutics. Front Immunol. 2020;11:212.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O’Connor KC. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve. 2018;57:172–84.

Article  PubMed  Google Scholar 

Conti-Fine BM, Milani M, Wang W. CD4 + T cells and cytokines in the pathogenesis of acquired myasthenia gravis. Ann N Y Acad Sci. 2008;1132:193–209.

Article  CAS  PubMed  Google Scholar 

Song J, Xi JY, Yu WB, Yan C, Luo SS, Zhou L, Zhu WH, Lu JH, Dong Q, Xiao BG, Zhao CB. Inhibition of ROCK activity regulates the balance of Th1, Th17 and Treg cells in myasthenia gravis. Clin Immunol (Orlando Fla). 2019;203:142–53.

Article  CAS  Google Scholar 

Balasa B, Deng C, Lee J, Bradley LM, Dalton DK, Christadoss P, Sarvetnick N. Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice. J Exp Med. 1997;186:385–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019;41:283–97.

Article  PubMed  Google Scholar 

Danikowski KM, Jayaraman S, Prabhakar BS. Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflamm. 2017;14:117.

Article  CAS  Google Scholar 

Chen Y, Zhang XS, Wang YG, Lu C, Li J, Zhang P. Imbalance of Th17 and Tregs in Thymoma may be a pathological mechanism of myasthenia gravis. Mol Immunol. 2021;133:67–76.

Article  CAS  PubMed  Google Scholar 

Yang Y, Zhang M, Ye Y, Ma S, Fan L, Li Z. High frequencies of circulating Tfh-Th17 cells in myasthenia gravis patients. Neurol Sci. 2017;38:1599–608.

Article  PubMed  Google Scholar 

Zhang CJ, Gong Y, Zhu W, Qi Y, Yang CS, Fu Y, Chang G, Li Y, Shi S, Wood K, Ladha S, Shi FD, Liu Q, Yan Y. Augmentation of circulating follicular helper T cells and their impact on autoreactive B cells in myasthenia gravis. J Immunol (Baltimore, Md 1950). 2016;197:2610–7.

Article  CAS  Google Scholar 

Huda R. New approaches to targeting B cells for myasthenia gravis therapy. Front Immunol. 2020;11:240.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takata K, Kinoshita M, Mochizuki H, Okuno T. Antigen specific B cells in myasthenia gravis patients. Immunological Med. 2020;43:65–71.

Article  Google Scholar 

Shoubridge AP, Choo JM, Martin AM, Keating DJ, Wong ML, Licinio J, Rogers GB. The gut microbiome and mental health: advances in research and emerging priorities. Mol Psychiatry. 2022;27:1908–19.

Article  CAS  PubMed  Google Scholar 

Kang Y, Li L, Kang X, Zhao Y, Cai Y. Gut microbiota and metabolites in myasthenia gravis: early diagnostic biomarkers and therapeutic strategies. Clin Immunol (Orlando Fla). 2022;245:109173.

Article  CAS  Google Scholar 

Totzeck A, Ramakrishnan E, Schlag M, Stolte B, Kizina K, Bolz S, Thimm A, Stettner M, Marchesi JR, Buer J, Kleinschnitz C, Verhasselt HL, Hagenacker T. Gut bacterial microbiota in patients with myasthenia gravis: results from the MYBIOM study. Ther Adv Neurol Disord. 2021;14:17562864211035656.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu P, Jiang Y, Gu S, Xue Y, Yang H, Li Y, Wang Y, Yan C, Jia P, Lin X, Qi G. Metagenome-wide association study of gut microbiome revealed potential microbial marker set for diagnosis of pediatric myasthenia gravis. BMC Med. 2021;19:159.

Article  PubMed  PubMed Central  Google Scholar 

Qiu D, Xia Z, Jiao X, Deng J, Zhang L, Li J. Altered gut microbiota in Myasthenia Gravis. Front Microbiol. 2018;9:2627.

Article  PubMed  PubMed Central  Google Scholar 

Siddiqui MT, Cresci GAM. The Immunomodulatory functions of Butyrate. J Inflamm Res. 2021;14:6025–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Säemann MD, Böhmig GA, Osterreicher CH, Burtscher H, Parolini O, Diakos C, Stöckl J, Hörl WH, Zlabinger GJ. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14:2380–2.

Article  PubMed  Google Scholar 

Segain JP, Raingeard de la Blétière D, Bourreille A, Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, Blottière HM, Galmiche JP. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut. 2000;47:397–403.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Danne C, Sokol H. Butyrate, a new microbiota-dependent player in CD8 + T cells immunity and cancer therapy? Cell Rep Med. 2021;2:100328.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yip W, Hughes MR, Li Y, Cait A, Hirst M, Mohn WW, McNagny KM. Butyrate shapes immune cell fate and function in allergic asthma. Front Immunol. 2021;12:628453.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortés-Vicente E, Gallardo E, Martínez M, Díaz-Manera J, Querol L, Rojas-García R, Illa I. Clinical characteristics of patients with double-seronegative myasthenia gravis and antibodies to cortactin. JAMA Neurol. 2016;73:1099–104.

Article  PubMed  Google Scholar 

Chitnis T, Khoury SJ. 20. Immunologic neuromuscular disorders. J Allergy Clin Immunol. 2003;111:659–68.

Article  Google Scholar 

Wolfe GI, Kaminski HJ, Aban IB, Minisman G, Kuo HC, Marx A, Ströbel P, Mazia C, Oger J, Cea JG, Heckmann JM, Evoli A, Nix W, Ciafaloni E, Antonini G, Witoonpanich R, King JO, Beydoun SR, Chalk CH, Barboi AC, Amato AA, Shaibani AI, Katirji B, Lecky BR, Buckley C, Vincent A, Dias-Tosta E, Yoshikawa H, Waddington-Cruz M, Pulley MT, Rivner MH, Kostera-Pruszczyk A, Pascuzzi RM, Jackson CE, Garcia Ramos GS, Verschuuren JJ, Massey JM, Kissel JT, Werneck LC, Benatar M, Barohn RJ, Tandan R, Mozaffar T, Conwit R, Odenkirchen J, Sonett JR, Jaretzki A 3rd, Newsom-Davis J, Cutter GR. Randomized trial of Thymectomy in Myasthenia Gravis. N Engl J Med. 2016;375:511–22.

Article  PubMed  PubMed Central  Google Scholar 

Brenes GA, Danhauer SC, Lyles MF, Hogan PE, Miller ME. Telephone-delivered cognitive behavioral therapy and telephone-delivered nondirective supportive therapy for rural older adults with generalized anxiety disorder: a randomized clinical trial. JAMA Psychiat. 2015;72:1012–20.

Article  Google Scholar 

Zhang J, Jia G, Liu Q, Hu J, Yan M, Yang B, Yang H, Zhou W, Li J. Silencing miR-146a influences B cells and ameliorates experimental autoimmune myasthenia gravis. Immunology. 2015;144:56–67.

Article  CAS  PubMed  Google Scholar 

Baggi F, Annoni A, Ubiali F, Milani M, Longhi R, Scaioli W, Cornelio F, Mantegazza R, Antozzi C. Breakdown of tolerance to a self-peptide of acetylcholine receptor alpha-subunit induces experimental myasthenia gravis in rats. J Immunol (Baltimore, Md: 1950). 2004;172:2697–703.

Article  CAS  Google Scholar 

Vasconcellos R, Carter NA, Rosser EC, Mauri C. IL-12p35 subunit contributes to autoimmunity by limiting IL-27-driven regulatory responses. J Immunol (Baltimore, Md1950). 2011;187:3402–12.

CAS  Google Scholar 

Carter NA, Vasconcellos R, Rosser EC, Tulone C, Muñoz-Suano A, Kamanaka M, Ehrenstein MR, Flavell RA, Mauri C. Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J Immunol. 1950;2011(186):5569–79.

Google Scholar 

Evans JG, Chavez-Rueda KA, Eddaoudi A, Meyer-Bahlburg A, Rawlings DJ, Ehrenstein MR, Mauri C. Novel suppressive function of transitional 2 B cells in experimental arthritis. Journal of immunol (Baltimore, Md. 1950;2007(178):7868–78.

Google Scholar 

Blair PA, Chavez-Rueda KA, Evans JG, Shlomchik MJ, Eddaoudi A, Isenberg DA, Ehrenstein MR, Mauri C. Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice. J Immunol (Baltimore, Md 1950). 2009;182:3492–502.

Article  CAS  Google Scholar 

Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J. A metagenome-wide association study of gut microbiota in type 2 Diabetes. Nature. 2012;490:55–60.

Article  CAS  PubMed  Google Scholar 

Fang C, Zhong H, Lin Y, Chen B, Han M, Ren H, Lu H, Luber JM, Xia M, Li W, Stein S, Xu X, Zhang W, Drmanac R, Wang J, Yang H, Hammarström L, Kostic AD, Kristiansen K, Li J. Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing. GigaScience. 2018;7:1–8.

Article  CAS  PubMed  Google Scholar 

Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, Mailyan A, Manghi P, Scholz M, Thomas AM, Valles-Colomer M, Weingart G, Zhang Y, Zolfo M, Huttenhower C, Franzosa EA, Segata N. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. eLife. 2021;10:e65088.

Article  CAS 

Comments (0)

No login
gif