Morris, R. J. & Potten, C. S. Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J. Invest. Dermatol. 112, 470–475 (1999).
Article CAS PubMed Google Scholar
Müller-Röver, S. et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol. 117, 3–15 (2001).
Greco, V. et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4, 155–169 (2009).
Article CAS PubMed PubMed Central Google Scholar
Paus, R. & Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 341, 491–497 (1999).
Article CAS PubMed Google Scholar
Rendl, M., Polak, L. & Fuchs, E. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev. 22, 543–557 (2008).
Article CAS PubMed PubMed Central Google Scholar
Hsu, Y.-C., Pasolli, H. A. & Fuchs, E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144, 92–105 (2011).
Article CAS PubMed PubMed Central Google Scholar
Chase, H. B. Growth of the hair. Physiol. Rev. 34, 113–126 (1954).
Article CAS PubMed Google Scholar
Craven, A. J. et al. Prolactin delays hair regrowth in mice. J. Endocrinol. 191, 415–425 (2006).
Article CAS PubMed Google Scholar
Goldberg, L. J. & Lenzy, Y. Nutrition and hair. Clin. Dermatol. 28, 412–419 (2010).
Goldstein, J. et al. Calcineurin/Nfatc1 signaling links skin stem cell quiescence to hormonal signaling during pregnancy and lactation. Genes Dev. 28, 983–994 (2014).
Article CAS PubMed PubMed Central Google Scholar
Shwartz, Y. et al. Cell types promoting goosebumps form a niche to regulate hair follicle stem cells. Cell 182, 578–593.e19 (2020).
Article CAS PubMed PubMed Central Google Scholar
Zhang, B. et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 577, 676–681 (2020).
Article CAS PubMed PubMed Central Google Scholar
Cotsarelis, G., Sun, T.-T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).
Article CAS PubMed Google Scholar
Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).
Article CAS PubMed Google Scholar
Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).
Article CAS PubMed Google Scholar
Claudinot, S., Nicolas, M., Oshima, H., Rochat, A. & Barrandon, Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc. Natl Acad. Sci. USA 102, 14677–14682 (2005).
Article CAS PubMed PubMed Central Google Scholar
Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11, 1351–1354 (2005).
Article CAS PubMed Google Scholar
Matsumura, H. et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351, aad4395 (2016).
Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).
Article CAS PubMed PubMed Central Google Scholar
Driskell, R. R. & Watt, F. M. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol. 25, 92–99 (2015).
Article CAS PubMed Google Scholar
Festa, E. et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146, 761–771 (2011).
Article CAS PubMed PubMed Central Google Scholar
Rahmani, W., Sinha, S. & Biernaskie, J. Immune modulation of hair follicle regeneration. NPJ Regen. Med. 5, 9 (2020).
Article PubMed PubMed Central Google Scholar
Li, K. N. et al. Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis. eLife 8, e45977 (2019).
Article PubMed PubMed Central Google Scholar
Heitman, N. et al. Dermal sheath contraction powers stem cell niche relocation during hair cycle regression. Science 367, 161–166 (2020).
Article CAS PubMed Google Scholar
Kobielak, K., Pasolli, H. A., Alonso, L., Polak, L. & Fuchs, E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J. Cell Biol. 163, 609–623 (2003).
Article CAS PubMed PubMed Central Google Scholar
Nowak, J. A., Polak, L., Pasolli, H. A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33–43 (2008).
Article CAS PubMed PubMed Central Google Scholar
Woo, W.-M., Zhen, H. H. & Oro, A. E. Shh maintains dermal papilla identity and hair morphogenesis via a Noggin–Shh regulatory loop. Genes Dev. 26, 1235–1246 (2012).
Article CAS PubMed PubMed Central Google Scholar
Millar, S. E. Molecular mechanisms regulating hair follicle development. J. Invest. Dermatol. 118, 216–225 (2002).
Article CAS PubMed Google Scholar
Sennett, R. & Rendl, M. Mesenchymal–epithelial interactions during hair follicle morphogenesis and cycling. Semin. Cell Dev. Biol. 23, 917–927 (2012).
Article CAS PubMed PubMed Central Google Scholar
Hardy, M. H. The secret life of the hair follicle. Trends Genet. 8, 55–61 (1992).
Article CAS PubMed Google Scholar
Xu, Z. et al. Embryonic attenuated Wnt/β-catenin signaling defines niche location and long-term stem cell fate in hair follicle. eLife 4, e10567 (2015).
Article PubMed PubMed Central Google Scholar
Saxena, N., Mok, K.-W. & Rendl, M. An updated classification of hair follicle morphogenesis. Exp. Dermatol. 28, 332–344 (2019).
Article PubMed PubMed Central Google Scholar
Schmidt-Ullrich, R. & Paus, R. Molecular principles of hair follicle induction and morphogenesis. BioEssays 27, 247–261 (2005).
Article CAS PubMed Google Scholar
Ouspenskaia, T., Matos, I., Mertz, A. F., Fiore, V. F. & Fuchs, E. WNT-SHH antagonism specifies and expands stem cell prior. to niche formation. Cell 164, 156–169 (2016).
Article CAS PubMed PubMed Central Google Scholar
Morita, R. et al. Tracing the origin of hair follicle stem cells. Nature 594, 547–552 (2021).
Article CAS PubMed Google Scholar
Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411 (2004).
Article CAS PubMed Google Scholar
Oliver, R. F. The induction of hair follicle formation in the adult hooded rat by vibrissa dermal papillae. J. Embryol. Exp. Morphol. 23, 219–236 (1970).
Comments (0)