Key challenges and recommendations for defining organelle membrane contact sites

Scorrano, L. et al. Coming together to define membrane contact sites. Nat. Commun. 10, 1287 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Bravo-Sagua, R., Lopez-Crisosto, C., Criollo, A., Inagi, R. & Lavandero, S. Organelle communication: joined in sickness and in health. Physiology 38, 101–109 (2023).

Article  CAS  Google Scholar 

Schuldiner, M. & Bohnert, M. A different kind of love — lipid droplet contact sites. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 1188–1196 (2017).

Article  CAS  PubMed  Google Scholar 

Spencer, R. K. W. et al. Membrane fission via transmembrane contact. Nat. Commun. 15, 2793 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voeltz, G. K., Sawyer, E. M., Hajnoczky, G. & Prinz, W. A. Making the connection: how membrane contact sites have changed our view of organelle biology. Cell 187, 257–270 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, S., Coukos, R., Gao, F. & Krainc, D. Dysregulation of organelle membrane contact sites in neurological diseases. Neuron 110, 2386–2408 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diaz, P., Sandoval-Borquez, A., Bravo-Sagua, R., Quest, A. F. G. & Lavandero, S. Perspectives on organelle interaction, protein dysregulation, and cancer disease. Front. Cell Dev. Biol. 9, 613336 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Desai, R. et al. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci. Adv. 6, eabc9955 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eisenberg-Bord, M. et al. Cnm1 mediates nucleus–mitochondria contact site formation in response to phospholipid levels. J. Cell Biol. 220, e202104100 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zervopoulos, S. D. et al. MFN2-driven mitochondria-to-nucleus tethering allows a non-canonical nuclear entry pathway of the mitochondrial pyruvate dehydrogenase complex. Mol. Cell 82, 1066–1077.e7 (2022).

Article  CAS  PubMed  Google Scholar 

Karoutas, A. et al. The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. Nat. Cell Biol. 21, 1248–1260 (2019).

Article  CAS  PubMed  Google Scholar 

Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).

Article  CAS  PubMed  Google Scholar 

Pan, X. et al. Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. Mol. Biol. Cell 11, 2445–2457 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lord, C. L. & Wente, S. R. Nuclear envelope–vacuole contacts mitigate nuclear pore complex assembly stress. J. Cell Biol. 219, e202001165 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kvam, E. & Goldfarb, D. S. Nucleus–vacuole junctions and piecemeal microautophagy of the nucleus in S. cerevisiae. Autophagy 3, 85–92 (2007).

Article  CAS  PubMed  Google Scholar 

Jeong, H. et al. Mechanistic insight into the nucleus–vacuole junction based on the Vac8p-Nvj1p crystal structure. Proc. Natl Acad. Sci. USA 114, E4539–E4548 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kohlwein, S. D. et al. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear–vacuolar interface in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 109–125 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henne, W. M. et al. Mdm1/Snx13 is a novel ER-endolysosomal interorganelle tethering protein. J. Cell Biol. 210, 541–551 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kohler, V. & Buttner, S. Remodelling of nucleus–vacuole junctions during metabolic and proteostatic stress. Contact 4, 25152564211016608 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Zung, N. & Schuldiner, M. New horizons in mitochondrial contact site research. Biol. Chem. 401, 793–809 (2020).

Article  CAS  PubMed  Google Scholar 

Csordas, G., Weaver, D. & Hajnoczky, G. Endoplasmic reticulum–mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 28, 523–540 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson, E. L. & Metzakopian, E. Correction: ER–mitochondria contact sites in neurodegeneration: genetic screening approaches to investigate novel disease mechanisms. Cell Death Differ. 28, 2990 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Szabadkai, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Y. et al. DJ-1 regulates the integrity and function of ER–mitochondria association through interaction with IP3R3–Grp75–VDAC1. Proc. Natl Acad. Sci. USA 116, 25322–25328 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ottolini, D., Calì, T., Negro, A. & Brini, M. The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum–mitochondria tethering. Hum. Mol. Genet. 22, 2152–2168 (2013).

Article  CAS  PubMed  Google Scholar 

Cali, T., Ottolini, D., Soriano, M. E. & Brini, M. A new split-GFP-based probe reveals DJ-1 translocation into the mitochondrial matrix to sustain ATP synthesis upon nutrient deprivation. Hum. Mol. Genet. 24, 1045–1060 (2015).

Article  CAS  PubMed  Google Scholar 

Thoudam, T. et al. PDK4 augments ER–mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes 68, 571–586 (2019).

Article  CAS  PubMed  Google Scholar 

D’Eletto, M. et al. Transglutaminase type 2 regulates ER–mitochondria contact sites by interacting with GRP75. Cell Rep. 25, 3573–3581.e4 (2018).

Article  PubMed  Google Scholar 

Hayashi, T. & Su, T. P. Sigma-1 receptor chaperones at the ER–mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131, 596–610 (2007).

Article  CAS  PubMed  Google Scholar 

Hirabayashi, Y. et al. ER–mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630 (2017).

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif