Scorrano, L. et al. Coming together to define membrane contact sites. Nat. Commun. 10, 1287 (2019).
Article PubMed PubMed Central Google Scholar
Bravo-Sagua, R., Lopez-Crisosto, C., Criollo, A., Inagi, R. & Lavandero, S. Organelle communication: joined in sickness and in health. Physiology 38, 101–109 (2023).
Schuldiner, M. & Bohnert, M. A different kind of love — lipid droplet contact sites. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 1188–1196 (2017).
Article CAS PubMed Google Scholar
Spencer, R. K. W. et al. Membrane fission via transmembrane contact. Nat. Commun. 15, 2793 (2024).
Article CAS PubMed PubMed Central Google Scholar
Voeltz, G. K., Sawyer, E. M., Hajnoczky, G. & Prinz, W. A. Making the connection: how membrane contact sites have changed our view of organelle biology. Cell 187, 257–270 (2024).
Article CAS PubMed PubMed Central Google Scholar
Kim, S., Coukos, R., Gao, F. & Krainc, D. Dysregulation of organelle membrane contact sites in neurological diseases. Neuron 110, 2386–2408 (2022).
Article CAS PubMed PubMed Central Google Scholar
Diaz, P., Sandoval-Borquez, A., Bravo-Sagua, R., Quest, A. F. G. & Lavandero, S. Perspectives on organelle interaction, protein dysregulation, and cancer disease. Front. Cell Dev. Biol. 9, 613336 (2021).
Article PubMed PubMed Central Google Scholar
Desai, R. et al. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci. Adv. 6, eabc9955 (2020).
Article CAS PubMed PubMed Central Google Scholar
Eisenberg-Bord, M. et al. Cnm1 mediates nucleus–mitochondria contact site formation in response to phospholipid levels. J. Cell Biol. 220, e202104100 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zervopoulos, S. D. et al. MFN2-driven mitochondria-to-nucleus tethering allows a non-canonical nuclear entry pathway of the mitochondrial pyruvate dehydrogenase complex. Mol. Cell 82, 1066–1077.e7 (2022).
Article CAS PubMed Google Scholar
Karoutas, A. et al. The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. Nat. Cell Biol. 21, 1248–1260 (2019).
Article CAS PubMed Google Scholar
Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).
Article CAS PubMed Google Scholar
Pan, X. et al. Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. Mol. Biol. Cell 11, 2445–2457 (2000).
Article CAS PubMed PubMed Central Google Scholar
Lord, C. L. & Wente, S. R. Nuclear envelope–vacuole contacts mitigate nuclear pore complex assembly stress. J. Cell Biol. 219, e202001165 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kvam, E. & Goldfarb, D. S. Nucleus–vacuole junctions and piecemeal microautophagy of the nucleus in S. cerevisiae. Autophagy 3, 85–92 (2007).
Article CAS PubMed Google Scholar
Jeong, H. et al. Mechanistic insight into the nucleus–vacuole junction based on the Vac8p-Nvj1p crystal structure. Proc. Natl Acad. Sci. USA 114, E4539–E4548 (2017).
Article CAS PubMed PubMed Central Google Scholar
Kohlwein, S. D. et al. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear–vacuolar interface in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 109–125 (2001).
Article CAS PubMed PubMed Central Google Scholar
Henne, W. M. et al. Mdm1/Snx13 is a novel ER-endolysosomal interorganelle tethering protein. J. Cell Biol. 210, 541–551 (2015).
Article CAS PubMed PubMed Central Google Scholar
Kohler, V. & Buttner, S. Remodelling of nucleus–vacuole junctions during metabolic and proteostatic stress. Contact 4, 25152564211016608 (2021).
Article PubMed PubMed Central Google Scholar
Zung, N. & Schuldiner, M. New horizons in mitochondrial contact site research. Biol. Chem. 401, 793–809 (2020).
Article CAS PubMed Google Scholar
Csordas, G., Weaver, D. & Hajnoczky, G. Endoplasmic reticulum–mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 28, 523–540 (2018).
Article CAS PubMed PubMed Central Google Scholar
Wilson, E. L. & Metzakopian, E. Correction: ER–mitochondria contact sites in neurodegeneration: genetic screening approaches to investigate novel disease mechanisms. Cell Death Differ. 28, 2990 (2021).
Article PubMed PubMed Central Google Scholar
Szabadkai, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911 (2006).
Article CAS PubMed PubMed Central Google Scholar
Liu, Y. et al. DJ-1 regulates the integrity and function of ER–mitochondria association through interaction with IP3R3–Grp75–VDAC1. Proc. Natl Acad. Sci. USA 116, 25322–25328 (2019).
Article CAS PubMed PubMed Central Google Scholar
Ottolini, D., Calì, T., Negro, A. & Brini, M. The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum–mitochondria tethering. Hum. Mol. Genet. 22, 2152–2168 (2013).
Article CAS PubMed Google Scholar
Cali, T., Ottolini, D., Soriano, M. E. & Brini, M. A new split-GFP-based probe reveals DJ-1 translocation into the mitochondrial matrix to sustain ATP synthesis upon nutrient deprivation. Hum. Mol. Genet. 24, 1045–1060 (2015).
Article CAS PubMed Google Scholar
Thoudam, T. et al. PDK4 augments ER–mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes 68, 571–586 (2019).
Article CAS PubMed Google Scholar
D’Eletto, M. et al. Transglutaminase type 2 regulates ER–mitochondria contact sites by interacting with GRP75. Cell Rep. 25, 3573–3581.e4 (2018).
Hayashi, T. & Su, T. P. Sigma-1 receptor chaperones at the ER–mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131, 596–610 (2007).
Article CAS PubMed Google Scholar
Hirabayashi, Y. et al. ER–mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630 (2017).
Comments (0)