Eckhart, L. et al. Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire. Mol. Biol. Evol. 25, 831–841 (2008).
Article CAS PubMed Google Scholar
Ross, C. et al. Inflammatory caspases: toward a unified model for caspase activation by inflammasomes. Annu. Rev. Immunol. 40, 249–269 (2022).
Article CAS PubMed Google Scholar
Vitale, I. et al. Apoptotic cell death in disease-current understanding of the NCCD 2023. Cell Death Differ. 30, 1097–1154 (2023).
Article PubMed PubMed Central Google Scholar
Green, D. R. Caspases and their substrates. Cold Spring Harb. Perspect. Biol. 14, a041012 (2022).
Article CAS PubMed PubMed Central Google Scholar
Broz, P., Pelegrín, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20, 143–157 (2020).
Article CAS PubMed Google Scholar
Galluzzi, L., López-Soto, A., Kumar, S. & Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. Immunity 44, 221–231 (2016).
Article CAS PubMed Google Scholar
Avery, L. & Horvitz, H. R. A cell that dies during wild-type C. elegans development can function as a neuron in a CED-3 mutant. Cell 51, 1071–1078 (1987). To our knowledge, this study is the first demonstration that the nematode homologue of caspase 3 is strictly required for programmed cell death during neuronal development.
Article CAS PubMed PubMed Central Google Scholar
Quinn, L. M. et al. An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J. Biol. Chem. 275, 40416–40424 (2000).
Article CAS PubMed Google Scholar
Daish, T. J., Mills, K. & Kumar, S. Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. Dev. Cell 7, 909–915 (2004).
Article CAS PubMed Google Scholar
Galluzzi, L. et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 22, 58–73 (2015).
Article CAS PubMed Google Scholar
Chipuk, J. E. & Green, D. R. Do inducers of apoptosis trigger caspase-independent cell death? Nat. Rev. Mol. Cell Biol. 6, 268–275 (2005).
Article CAS PubMed Google Scholar
Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).
Article CAS PubMed Google Scholar
Fernando, P., Brunette, S. & Megeney, L. A. Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J. 19, 1671–1673 (2005).
Article CAS PubMed Google Scholar
Williams, D. W., Kondo, S., Krzyzanowska, A., Hiromi, Y. & Truman, J. W. Local caspase activity directs engulfment of dendrites during pruning. Nat. Neurosci. 9, 1234–1236 (2006).
Article CAS PubMed Google Scholar
Kuida, K. et al. Reduced apoptosis and cytochrome C-mediated caspase activation in mice lacking caspase 9. Cell 94, 325–337 (1998).
Article CAS PubMed Google Scholar
Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750 (1998).
Article CAS PubMed Google Scholar
Lakhani, S. A. et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311, 847–851 (2006).
Article CAS PubMed PubMed Central Google Scholar
Bedoui, S., Herold, M. J. & Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol. 21, 678–695 (2020).
Article CAS PubMed Google Scholar
Lartigue, L. et al. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol. Biol. Cell 20, 4871–4884 (2009).
Article CAS PubMed PubMed Central Google Scholar
Vandenabeele, P., Bultynck, G. & Savvides, S. N. Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat. Rev. Mol. Cell Biol. 24, 312–333 (2023).
Article CAS PubMed Google Scholar
Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015). These authors elegantly provided a mechanistic connection between inflammasome signalling and regulated cell death via pyroptosis.
Article CAS PubMed Google Scholar
Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).
Article CAS PubMed Google Scholar
Kayagaki, N. et al. Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury. Nature 618, 1072–1077 (2023).
Article CAS PubMed PubMed Central Google Scholar
Pourmal, S. et al. Autoinhibition of dimeric NINJ1 prevents plasma membrane rupture. Nature 637, 446–452 (2025).
Article CAS PubMed Google Scholar
Chen, K. W. et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci. Immunol. 3, eaar6676 (2018).
Thiam, H. R., Wong, S. L., Wagner, D. D. & Waterman, C. M. Cellular mechanisms of NETosis. Annu. Rev. Cell Dev. Biol. 36, 191–218 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kostura, M. J. et al. Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc. Natl Acad. Sci. USA 86, 5227–5231 (1989).
Article CAS PubMed PubMed Central Google Scholar
Ghayur, T. et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 386, 619–623 (1997).
Article CAS PubMed Google Scholar
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417–426 (2002).
Article CAS PubMed Google Scholar
Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).
Article CAS PubMed Google Scholar
Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).
Comments (0)