Regulation of inflammatory processes by caspases

Eckhart, L. et al. Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire. Mol. Biol. Evol. 25, 831–841 (2008).

Article  CAS  PubMed  Google Scholar 

Ross, C. et al. Inflammatory caspases: toward a unified model for caspase activation by inflammasomes. Annu. Rev. Immunol. 40, 249–269 (2022).

Article  CAS  PubMed  Google Scholar 

Vitale, I. et al. Apoptotic cell death in disease-current understanding of the NCCD 2023. Cell Death Differ. 30, 1097–1154 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Green, D. R. Caspases and their substrates. Cold Spring Harb. Perspect. Biol. 14, a041012 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Broz, P., Pelegrín, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20, 143–157 (2020).

Article  CAS  PubMed  Google Scholar 

Galluzzi, L., López-Soto, A., Kumar, S. & Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. Immunity 44, 221–231 (2016).

Article  CAS  PubMed  Google Scholar 

Avery, L. & Horvitz, H. R. A cell that dies during wild-type C. elegans development can function as a neuron in a CED-3 mutant. Cell 51, 1071–1078 (1987). To our knowledge, this study is the first demonstration that the nematode homologue of caspase 3 is strictly required for programmed cell death during neuronal development.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quinn, L. M. et al. An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J. Biol. Chem. 275, 40416–40424 (2000).

Article  CAS  PubMed  Google Scholar 

Daish, T. J., Mills, K. & Kumar, S. Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. Dev. Cell 7, 909–915 (2004).

Article  CAS  PubMed  Google Scholar 

Galluzzi, L. et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 22, 58–73 (2015).

Article  CAS  PubMed  Google Scholar 

Chipuk, J. E. & Green, D. R. Do inducers of apoptosis trigger caspase-independent cell death? Nat. Rev. Mol. Cell Biol. 6, 268–275 (2005).

Article  CAS  PubMed  Google Scholar 

Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

Article  CAS  PubMed  Google Scholar 

Fernando, P., Brunette, S. & Megeney, L. A. Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J. 19, 1671–1673 (2005).

Article  CAS  PubMed  Google Scholar 

Williams, D. W., Kondo, S., Krzyzanowska, A., Hiromi, Y. & Truman, J. W. Local caspase activity directs engulfment of dendrites during pruning. Nat. Neurosci. 9, 1234–1236 (2006).

Article  CAS  PubMed  Google Scholar 

Kuida, K. et al. Reduced apoptosis and cytochrome C-mediated caspase activation in mice lacking caspase 9. Cell 94, 325–337 (1998).

Article  CAS  PubMed  Google Scholar 

Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750 (1998).

Article  CAS  PubMed  Google Scholar 

Lakhani, S. A. et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311, 847–851 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bedoui, S., Herold, M. J. & Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol. 21, 678–695 (2020).

Article  CAS  PubMed  Google Scholar 

Lartigue, L. et al. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol. Biol. Cell 20, 4871–4884 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vandenabeele, P., Bultynck, G. & Savvides, S. N. Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat. Rev. Mol. Cell Biol. 24, 312–333 (2023).

Article  CAS  PubMed  Google Scholar 

Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015). These authors elegantly provided a mechanistic connection between inflammasome signalling and regulated cell death via pyroptosis.

Article  CAS  PubMed  Google Scholar 

Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

Article  CAS  PubMed  Google Scholar 

Kayagaki, N. et al. Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury. Nature 618, 1072–1077 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pourmal, S. et al. Autoinhibition of dimeric NINJ1 prevents plasma membrane rupture. Nature 637, 446–452 (2025).

Article  CAS  PubMed  Google Scholar 

Chen, K. W. et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci. Immunol. 3, eaar6676 (2018).

Article  PubMed  Google Scholar 

Thiam, H. R., Wong, S. L., Wagner, D. D. & Waterman, C. M. Cellular mechanisms of NETosis. Annu. Rev. Cell Dev. Biol. 36, 191–218 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kostura, M. J. et al. Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc. Natl Acad. Sci. USA 86, 5227–5231 (1989).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghayur, T. et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 386, 619–623 (1997).

Article  CAS  PubMed  Google Scholar 

Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417–426 (2002).

Article  CAS  PubMed  Google Scholar 

Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

Article  CAS  PubMed  Google Scholar 

Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif