Burns, K. H. Repetitive DNA in disease. Science 376, 353–354 (2022).
Article CAS PubMed Google Scholar
Wells, J. N. & Feschotte, C. A field guide to eukaryotic transposable elements. Annu. Rev. Genet. 54, 539–561 (2020).
Article CAS PubMed PubMed Central Google Scholar
Osmanski, A. B. et al. Insights into mammalian TE diversity through the curation of 248 genome assemblies. Science 380, eabn1430 (2023).
Article CAS PubMed PubMed Central Google Scholar
Schartl, M. et al. The genomes of all lungfish inform on genome expansion and tetrapod evolution. Nature 634, 96–103 (2024).
Article CAS PubMed PubMed Central Google Scholar
Falcon, F., Tanaka, E. M. & Rodriguez-Terrones, D. Transposon waves at the water-to-land transition. Curr. Opin. Genet. Dev. 81, 102059 (2023).
Article CAS PubMed Google Scholar
Naville, M. et al. Massive changes of genome size driven by expansions of non-autonomous transposable elements. Curr. Biol. 29, 1161–1168.e6 (2019).
Article CAS PubMed Google Scholar
Kapusta, A., Suh, A. & Feschotte, C. Dynamics of genome size evolution in birds and mammals. Proc. Natl Acad. Sci. USA 114, E1460–E1469 (2017).
Article CAS PubMed PubMed Central Google Scholar
Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).
Article CAS PubMed Google Scholar
Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).
Article CAS PubMed Google Scholar
Wang, X., Ramat, A., Simonelig, M. & Liu, M. F. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat. Rev. Mol. Cell Biol. 24, 123–141 (2023).
Article CAS PubMed Google Scholar
Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian PIWI proteins. Nature 442, 199–202 (2006).
Siomi, M. C., Sato, K., Pezic, D. & Aravin, A. A. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246–258 (2011).
Article CAS PubMed Google Scholar
Iwasaki, Y. W., Siomi, M. C. & Siomi, H. PIWI-interacting RNA: its biogenesis and functions. Annu. Rev. Biochem. 84, 405–433 (2015).
Article CAS PubMed Google Scholar
Czech, B. et al. piRNA-guided genome defense: from biogenesis to silencing. Annu. Rev. Genet. 52, 131–157 (2018).
Article CAS PubMed PubMed Central Google Scholar
Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by PIWI are essential for stem cell self-renewal. Genes. Dev. 12, 3715–3727 (1998).
Article CAS PubMed PubMed Central Google Scholar
Aravin, A. A. et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11, 1017–1027 (2001).
Article CAS PubMed Google Scholar
Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203–207 (2006).
Article CAS PubMed Google Scholar
Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes. Dev. 20, 1709–1714 (2006).
Article CAS PubMed PubMed Central Google Scholar
Lau, N. C. et al. Characterization of the piRNA complex from rat testes. Science 313, 363–367 (2006).
Article CAS PubMed Google Scholar
Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324 (2006).
Article CAS PubMed Google Scholar
Weick, E. M. & Miska, E. A. piRNAs: from biogenesis to function. Development 141, 3458–3471 (2014).
Article CAS PubMed Google Scholar
Wang, L., Dou, K., Moon, S., Tan, F. J. & Zhang, Z. Z. Hijacking oogenesis enables massive propagation of LINE and retroviral transposons. Cell 174, 1082–1094.e12 (2018).
Article CAS PubMed PubMed Central Google Scholar
Gainetdinov, I. et al. Relaxed targeting rules help PIWI proteins silence transposons. Nature 619, 394–402 (2023).
Article CAS PubMed PubMed Central Google Scholar
Li, Z. et al. Mammalian PIWI–piRNA–target complexes reveal features for broad and efficient target silencing. Nat. Struct. Mol. Biol. 31, 1222–1231 (2024).
Article CAS PubMed Google Scholar
Carmell, M. A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503–514 (2007).
Article CAS PubMed Google Scholar
Klenov, M. S. et al. Separation of stem cell maintenance and transposon silencing functions of PIWI protein. Proc. Natl Acad. Sci. USA 108, 18760–18765 (2011).
Article CAS PubMed PubMed Central Google Scholar
Sienski, G., Donertas, D. & Brennecke, J. Transcriptional silencing of transposons by PIWI and Maelstrom and its impact on chromatin state and gene expression. Cell 151, 964–980 (2012).
Article CAS PubMed PubMed Central Google Scholar
Chang, T. H. et al. Maelstrom represses canonical polymerase II transcription within bi-directional piRNA clusters in Drosophila melanogaster. Mol. Cell 73, 291–303.e6 (2019).
Article CAS PubMed Google Scholar
Onishi, R. et al. PIWI suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. Sci. Adv. 6, eaaz7420 (2020).
Article CAS PubMed PubMed Central Google Scholar
Dönertas, D., Sienski, G. & Brennecke, J. Drosophila Gtsf1 is an essential component of the PIWI-mediated transcriptional silencing complex. Genes. Dev. 27, 1693–1705 (2013).
Article PubMed PubMed Central Google Scholar
Ohtani, H. et al. DmGTSF1 is necessary for PIWI–piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. Genes. Dev. 27, 1656–1661 (2013).
Comments (0)