Transcriptional and post-transcriptional regulation of transposable elements and their roles in development and disease

Burns, K. H. Repetitive DNA in disease. Science 376, 353–354 (2022).

Article  CAS  PubMed  Google Scholar 

Wells, J. N. & Feschotte, C. A field guide to eukaryotic transposable elements. Annu. Rev. Genet. 54, 539–561 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osmanski, A. B. et al. Insights into mammalian TE diversity through the curation of 248 genome assemblies. Science 380, eabn1430 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schartl, M. et al. The genomes of all lungfish inform on genome expansion and tetrapod evolution. Nature 634, 96–103 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falcon, F., Tanaka, E. M. & Rodriguez-Terrones, D. Transposon waves at the water-to-land transition. Curr. Opin. Genet. Dev. 81, 102059 (2023).

Article  CAS  PubMed  Google Scholar 

Naville, M. et al. Massive changes of genome size driven by expansions of non-autonomous transposable elements. Curr. Biol. 29, 1161–1168.e6 (2019).

Article  CAS  PubMed  Google Scholar 

Kapusta, A., Suh, A. & Feschotte, C. Dynamics of genome size evolution in birds and mammals. Proc. Natl Acad. Sci. USA 114, E1460–E1469 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).

Article  CAS  PubMed  Google Scholar 

Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).

Article  CAS  PubMed  Google Scholar 

Wang, X., Ramat, A., Simonelig, M. & Liu, M. F. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat. Rev. Mol. Cell Biol. 24, 123–141 (2023).

Article  CAS  PubMed  Google Scholar 

Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian PIWI proteins. Nature 442, 199–202 (2006).

Article  PubMed  Google Scholar 

Siomi, M. C., Sato, K., Pezic, D. & Aravin, A. A. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246–258 (2011).

Article  CAS  PubMed  Google Scholar 

Iwasaki, Y. W., Siomi, M. C. & Siomi, H. PIWI-interacting RNA: its biogenesis and functions. Annu. Rev. Biochem. 84, 405–433 (2015).

Article  CAS  PubMed  Google Scholar 

Czech, B. et al. piRNA-guided genome defense: from biogenesis to silencing. Annu. Rev. Genet. 52, 131–157 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by PIWI are essential for stem cell self-renewal. Genes. Dev. 12, 3715–3727 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aravin, A. A. et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11, 1017–1027 (2001).

Article  CAS  PubMed  Google Scholar 

Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203–207 (2006).

Article  CAS  PubMed  Google Scholar 

Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes. Dev. 20, 1709–1714 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau, N. C. et al. Characterization of the piRNA complex from rat testes. Science 313, 363–367 (2006).

Article  CAS  PubMed  Google Scholar 

Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324 (2006).

Article  CAS  PubMed  Google Scholar 

Weick, E. M. & Miska, E. A. piRNAs: from biogenesis to function. Development 141, 3458–3471 (2014).

Article  CAS  PubMed  Google Scholar 

Wang, L., Dou, K., Moon, S., Tan, F. J. & Zhang, Z. Z. Hijacking oogenesis enables massive propagation of LINE and retroviral transposons. Cell 174, 1082–1094.e12 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gainetdinov, I. et al. Relaxed targeting rules help PIWI proteins silence transposons. Nature 619, 394–402 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Z. et al. Mammalian PIWI–piRNA–target complexes reveal features for broad and efficient target silencing. Nat. Struct. Mol. Biol. 31, 1222–1231 (2024).

Article  CAS  PubMed  Google Scholar 

Carmell, M. A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503–514 (2007).

Article  CAS  PubMed  Google Scholar 

Klenov, M. S. et al. Separation of stem cell maintenance and transposon silencing functions of PIWI protein. Proc. Natl Acad. Sci. USA 108, 18760–18765 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sienski, G., Donertas, D. & Brennecke, J. Transcriptional silencing of transposons by PIWI and Maelstrom and its impact on chromatin state and gene expression. Cell 151, 964–980 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang, T. H. et al. Maelstrom represses canonical polymerase II transcription within bi-directional piRNA clusters in Drosophila melanogaster. Mol. Cell 73, 291–303.e6 (2019).

Article  CAS  PubMed  Google Scholar 

Onishi, R. et al. PIWI suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. Sci. Adv. 6, eaaz7420 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dönertas, D., Sienski, G. & Brennecke, J. Drosophila Gtsf1 is an essential component of the PIWI-mediated transcriptional silencing complex. Genes. Dev. 27, 1693–1705 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Ohtani, H. et al. DmGTSF1 is necessary for PIWI–piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. Genes. Dev. 27, 1656–1661 (2013).

Article 

Comments (0)

No login
gif