Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges

Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–16.

Article  CAS  PubMed  Google Scholar 

Fabiani M, Ramigni M, Gobbetto V, Mateo-Urdiales A, Pezzotti P, Piovesan C. Effectiveness of the Comirnaty (BNT162b2, BioNTech/Pfizer) vaccine in preventing SARS-CoV-2 infection among healthcare workers, Treviso province, Veneto region, Italy, 27 December 2020 to 24 March 2021. Euro Surveill. 2021; 26(17).

Uludag H, Parent K, Aliabadi HM, Haddadi A. Prospects for RNAi therapy of COVID-19. Front Bioeng Biotechnol. 2020;8:916.

Article  PubMed  PubMed Central  Google Scholar 

Ghosh S, Firdous SM, Nath A. siRNA could be a potential therapy for COVID-19. Excli J. 2020;19:528–31.

PubMed  PubMed Central  Google Scholar 

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

Article  CAS  PubMed  Google Scholar 

Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature. 2004;431(7006):371–8.

Article  CAS  PubMed  Google Scholar 

Seong M, Kang H. Hypoxia-induced miR-1260b regulates vascular smooth muscle cell proliferation by targeting GDF11. BMB Rep. 2020;53(4):206–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park N, Kang H. BMP-Induced MicroRNA-101 expression regulates vascular smooth muscle cell migration. Int J Mol Sci. 2020;21(13).

Lee J, Kang H. Role of MicroRNAs and long non-coding RNAs in sarcopenia. Cells. 2022;11(2).

Lee J, Kang H. Nucleolin regulates pulmonary artery smooth muscle cell proliferation under hypoxia by modulating miRNA expression. Cells. 2023;12(5).

Hannon GJ. RNA interference. Nature. 2002;418(6894):244–51.

Article  CAS  PubMed  Google Scholar 

Traube FR, Stern M, Tolke AJ, Rudelius M, Mejias-Perez E, Raddaoui N, et al. Suppression of SARS-CoV-2 replication with stabilized and click-chemistry modified siRNAs. Angew Chem Int Ed Engl. 2022;61(38): e202204556.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN, et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci USA. 2003;100(5):2718–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hutvagner G, Zamore PD. RNAi: nature abhors a double-strand. Curr Opin Genet Dev. 2002;12(2):225–32.

Article  CAS  PubMed  Google Scholar 

Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science. 2005;309(5740):1519–24.

Article  CAS  PubMed  Google Scholar 

Kalita T, Dezfouli SA, Pandey LM, Uludag H. siRNA Functionalized lipid nanoparticles (LNPs) in management of diseases. Pharmaceutics. 2022;14(11).

Ding SW. RNA-based antiviral immunity. Nat Rev Immunol. 2010;10(9):632–44.

Article  CAS  PubMed  Google Scholar 

Foster PS, Plank M, Collison A, Tay HL, Kaiko GE, Li J, et al. The emerging role of microRNAs in regulating immune and inflammatory responses in the lung. Immunol Rev. 2013;253(1):198–215.

Article  PubMed  Google Scholar 

Seong M, Lee J, Kang H. Hypoxia-induced regulation of mTOR signaling by miR-7 targeting REDD1. J Cell Biochem. 2019;120(3):4523–32.

Article  CAS  PubMed  Google Scholar 

Lee J, Heo J, Kang H. miR-92b-3p-TSC1 axis is critical for mTOR signaling-mediated vascular smooth muscle cell proliferation induced by hypoxia. Cell Death Differ. 2019;26(9):1782–95.

Article  CAS  PubMed  Google Scholar 

Lee J, Kang H. Hypoxia promotes vascular smooth muscle cell proliferation through microRNA-mediated suppression of cyclin-dependent kinase inhibitors. Cells. 2019;8(8).

Lam JK, Chow MY, Zhang Y, Leung SW. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4(9): e252.

Article  CAS  PubMed Central  Google Scholar 

Hata A, Kang H. Functions of the bone morphogenetic protein signaling pathway through microRNAs (review). Int J Mol Med. 2015;35(3):563–8.

Article  CAS  PubMed  Google Scholar 

Kang H. Role of MicroRNAs in TGF-beta signaling pathway-mediated pulmonary fibrosis. Int J Mol Sci. 2017;18(12).

Taxman DJ, Livingstone LR, Zhang J, Conti BJ, Iocca HA, Williams KL, et al. Criteria for effective design, construction, and gene knockdown by shRNA vectors. BMC Biotechnol. 2006;6:7.

Article  PubMed  PubMed Central  Google Scholar 

Leonard JN, Schaffer DV. Antiviral RNAi therapy: emerging approaches for hitting a moving target. Gene Ther. 2006;13(6):532–40.

Article  CAS  PubMed  Google Scholar 

Tatiparti K, Sau S, Kashaw SK, Iyer AK. siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel). 2017;7(4).

Lee YR, Tsai HP, Yeh CS, Fang CY, Chan MWY, Wu TY, et al. RNA Interference approach is a good strategy against SARS-CoV-2. Viruses. 2022;15(1).

Awasthi R, Roseblade A, Hansbro PM, Rathbone MJ, Dua K, Bebawy M. Nanoparticles in cancer treatment: opportunities and obstacles. Curr Drug Targets. 2018;19(14):1696–709.

Article  CAS  PubMed  Google Scholar 

Prelli Bozzo C, Nchioua R, Volcic M, Koepke L, Kruger J, Schutz D, et al. IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. Nat Commun. 2021;12(1):4584.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6(6):443–53.

Article  PubMed  PubMed Central  Google Scholar 

Niktab I, Haghparast M, Beigi MH, Megraw TL, Kiani A, Ghaedi K. Design of advanced siRNA therapeutics for the treatment of COVID-19. Meta Gene. 2021;29: 100910.

Article  CAS  PubMed  Google Scholar 

Clavel F, Hance AJ. HIV drug resistance. N Engl J Med. 2004;350(10):1023–35.

Article  CAS  PubMed  Google Scholar 

Sajid MI, Moazzam M, Cho Y, Kato S, Xu A, Way JJ, et al. siRNA therapeutics for the therapy of COVID-19 and other coronaviruses. Mol Pharm. 2021;18(6):2105–21.

Article  CAS  PubMed  Google Scholar 

DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E, et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci USA. 2010;107(19):8800–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zamora MR, Budev M, Rolfe M, Gottlieb J, Humar A, Devincenzo J, et al. RNA interference therapy in lung transplant patients infected with respiratory syncytial virus. Am J Respir Crit Care Med. 2011;183(4):531–8.

Article  CAS  PubMed  Google Scholar 

Alvarez R, Elbashir S, Borland T, Toudjarska I, Hadwiger P, John M, et al. RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. Antimicrob Agents Chemother. 2009;53(9):3952–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5(1):101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gottlieb J, Zamora MR, Hodges T, Musk AW, Sommerwerk U, Dilling D, et al. ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients. J Heart Lung Transplant. 2016;35(2):213–21.

Article  PubMed  Google Scholar 

Kelleher AD, Cortez-Jugo C, Cavalieri F, Qu Y, Glanville AR, Caruso F, et al. RNAi therapeutics: an antiviral strategy for human infections. Curr Opin Pharmacol. 2020;54:121–9.

Article  CAS  PubMed  Google Scholar 

Gane E, Lim YS, Kim JB, Jadhav V, Shen L, Bakardjiev AI, et al. Evaluation of RNAi therapeutics VIR-2218 and ALN-HBV for chronic hepatitis B: results from randomized clinical trials. J Hepatol. 2023.

Bartoli A, Gabrielli F, Tassi A, Cursaro C, Pinelli A, Andreone P. Treatments for HBV: a glimpse into the future. Viruses. 2021;13(9).

Yuen MF, Locarnini S, Lim TH, Strasser SI, Sievert W, Cheng W, et al. Combination treatments including the small-interfering RNA JNJ-3989 induce rapid and sometimes prolonged viral responses in patients with CHB. J Hepatol. 2022;77(5):1287–98.

Article  CAS  PubMed  Google Scholar 

Yuen MF, Asselah T, Jacobson IM, Brunetto MR, Janssen HLA, Takehara T, et al. Efficacy and safety of the siRNA JNJ-73763989 and the capsid assembly modulator JNJ-56136379 (bersacapavir) with nucleos(t)ide analogues for the treatment of chronic hepatitis B virus infection (REEF-1): a multicentre, double-blind, active-controlled, randomised, phase 2b trial. Lancet Gastroenterol Hepatol. 2023;8(9):790–802.

Article  PubMed 

Comments (0)

No login
gif