Obesity induces phenotypic switching of gastric smooth muscle cells through the activation of the PPARD/PDK4/ANGPTL4 pathway

NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet. 2024;403:1027–50.

Google Scholar 

Afshin A, Reitsma MB, Murray CJL. Health Effects of Overweight and Obesity in 195 Countries. N Engl J Med. 2017;377:1496–7.

PubMed  Google Scholar 

Acosta A, Abu Dayyeh BK, Port JD, Camilleri M. Recent advances in clinical practice challenges and opportunities in the management of obesity. Gut. 2014;63:687–95.

CAS  PubMed  Google Scholar 

Acosta A, Camilleri M. Gastrointestinal morbidity in obesity. Ann N Y Acad Sci. 2014;1311:42–56.

CAS  PubMed  PubMed Central  Google Scholar 

Delgado-Aros S, Locke GR, Camilleri M, Talley NJ, Fett S, Zinsmeister AR, et al. Obesity is associated with increased risk of gastrointestinal symptoms: a population-based study. Am J Gastroenterol. 2004;99:1801–6.

PubMed  Google Scholar 

de Santa BP, van den Brink GR, Roberts DJ. Development and differentiation of the intestinal epithelium. Cell Mol Life Sci. 2003;60:1322–32.

CAS  PubMed  PubMed Central  Google Scholar 

Steenackers N, Eksteen G, Wauters L, Augustijns P, Van der Schueren B, Vanuytsel T, et al. Understanding the gastrointestinal tract in obesity: From gut motility patterns to enzyme secretion. Neurogastroenterol Motil. 2024;36: e14758.

CAS  PubMed  Google Scholar 

Chen J, Chen L, Sanseau P, Freudenberg JM, Rajpal DK. Significant obesity-associated gene expression changes occur in the stomach but not intestines in obese mice. Physiol Rep. 2016;4: e12793.

PubMed  PubMed Central  Google Scholar 

Wright RA, Krinsky S, Fleeman C, Trujillo J, Teague E. Gastric emptying and obesity. Gastroenterology. 1983;84:747–51.

CAS  PubMed  Google Scholar 

Christian PE, Datz FL, Moore JG. Gastric emptying studies in the morbidly obese before and after gastroplasty. J Nucl Med. 1986;27:1686–90.

CAS  PubMed  Google Scholar 

Acosta A, Camilleri M, Burton D, O’Neill J, Eckert D, Carlson P, et al. Exenatide in obesity with accelerated gastric emptying: a randomized, pharmacodynamics study. Physiol Rep. 2015;3: e12610.

PubMed  PubMed Central  Google Scholar 

Camilleri M, Malhi H, Acosta A. Gastrointestinal complications of obesity. Gastroenterology. 2017;152:1656–70.

PubMed  Google Scholar 

Pajot G, Camilleri M, Calderon G, Davis J, Eckert D, Burton D, et al. Association between gastrointestinal phenotypes and weight gain in younger adults: a prospective 4-year cohort study. Int J Obes (Lond). 2020;44:2472–8.

PubMed  Google Scholar 

Ward SM, Sanders KM. Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. I. Functional development and plasticity of interstitial cells of Cajal networks. Am J Physiol Gastrointest Liver Physiol. 2001;281:602–11.

Google Scholar 

Chevalier NR. The first digestive movements in the embryo are mediated by mechanosensitive smooth muscle calcium waves. Philos Trans R Soc Lond B Biol Sci. 2018;373:20170322.

PubMed  PubMed Central  Google Scholar 

Di Natale MR, Athavale ON, Wang X, Du P, Cheng LK, Liu Z, et al. Functional and anatomical gastric regions and their relations to motility control. Neurogastroenterol Motil. 2023;35: e14560.

PubMed  Google Scholar 

Hayashi Y, Toyomasu Y, Saravanaperumal SA, Bardsley MR, Smestad JA, Lorincz A, et al. Hyperglycemia increases interstitial cells of cajal via MAPK1 and MAPK3 signaling to ETV1 and KIT. Lead Rapid Gastric Empt Gastroenterol. 2017;153:521-535.e20.

CAS  Google Scholar 

Scirocco A, Matarrese P, Carabotti M, Ascione B, Malorni W, Severi C. Cellular and molecular mechanisms of phenotypic switch in gastrointestinal smooth muscle. J Cell Physiol. 2016;231:295–302.

CAS  PubMed  Google Scholar 

Le Guen L, Marchal S, Faure S, de Santa BP. Mesenchymal-epithelial interactions during digestive tract development and epithelial stem cell regeneration. Cell Mol Life Sci. 2015;72:3883–96.

CAS  PubMed  PubMed Central  Google Scholar 

Martire D, Garnier S, Sagnol S, Bourret A, Marchal S, Chauvet N, et al. Phenotypic switch of smooth muscle cells in paediatric chronic intestinal pseudo-obstruction syndrome. J Cell Mol Med. 2021;25:4028–39.

CAS  PubMed  PubMed Central  Google Scholar 

McKey J, Martire D, de Santa BP, Faure S. LIX1 regulates YAP1 activity and controls the proliferation and differentiation of stomach mesenchymal progenitors. BMC Biol. 2016;14:34.

PubMed  PubMed Central  Google Scholar 

Guérin A, Angebault C, Kinet S, Cazevieille C, Rojo M, Fauconnier J, et al. LIX1-mediated changes in mitochondrial metabolism control the fate of digestive mesenchyme-derived cells. Redox Biol. 2022;56: 102431.

PubMed  PubMed Central  Google Scholar 

Wang Z, Wang D-Z, Pipes GCT, Olson EN. Myocardin is a master regulator of smooth muscle gene expression. Proc Natl Acad Sci USA. 2003;100:7129–34.

CAS  PubMed  PubMed Central  Google Scholar 

Struijs M-C, Diamond IR, de Silva N, Wales PW. Establishing norms for intestinal length in children. J Pediatr Surg. 2009;44:933–8.

PubMed  Google Scholar 

Nair DG, Miller KG, Lourenssen SR, Blennerhassett MG. Inflammatory cytokines promote growth of intestinal smooth muscle cells by induced expression of PDGF-Rβ. J Cell Mol Med. 2014;18:444–54.

CAS  PubMed  PubMed Central  Google Scholar 

Rouleau C, Matécki S, Kalfa N, Costes V, de Santa BP. Activation of MAP kinase (ERK1/2) in human neonatal colonic enteric nervous system. Neurogastroenterol Motil. 2009;21:207–14.

CAS  PubMed  Google Scholar 

Meziat C, Boulghobra D, Strock E, Battault S, Bornard I, Walther G, et al. Exercise training restores eNOS activation in the perivascular adipose tissue of obese rats: Impact on vascular function. Nitric Oxide. 2019;86:63–7.

CAS  PubMed  Google Scholar 

Frankel D, Davies M, Bhushan B, Kulaberoglu Y, Urriola-Munoz P, Bertrand-Michel J, et al. Cholesterol-rich naked mole-rat brain lipid membranes are susceptible to amyloid beta-induced damage in vitro. Aging (Albany NY). 2020;12:22266–90.

CAS  PubMed  Google Scholar 

Konate K, Josse E, Tasic M, Redjatti K, Aldrian G, Deshayes S, et al. WRAP-based nanoparticles for siRNA delivery: a SAR study and a comparison with lipid-based transfection reagents. J Nanobiotechnology. 2021;19:236.

CAS  PubMed  PubMed Central  Google Scholar 

Qiu B, Simon MC. BODIPY 493/503 staining of neutral lipid droplets for microscopy and quantification by flow cytometry. Bio Protoc. 2016;6: e1912.

PubMed  Google Scholar 

Beyaz S, Mana MD, Roper J, Kedrin D, Saadatpour A, Hong S-J, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531:53–8.

CAS  PubMed  PubMed Central  Google Scholar 

Baudry C, Reichardt F, Marchix J, Bado A, Schemann M, Varannes SB, et al. Diet-induced obesity has neuroprotective effects in murine gastric enteric nervous system: involvement of leptin and glial cell line-derived neurotrophic factor. J Physiol. 2012;590:533–44.

CAS  PubMed  Google Scholar 

Faure S, McKey J, Sagnol S, de Santa BP. Enteric neural crest cells regulate vertebrate stomach patterning and differentiation. Development. 2015;142:331–42.

CAS  PubMed  Google Scholar 

Vaes RDW, van den Berk L, Boonen B, van Dijk DPJ, Olde Damink SWM, Rensen SS. A novel human cell culture model to study visceral smooth muscle phenotypic modulation in health and disease. Am J Physiol Cell Physiol. 2018;315:C598-607.

CAS  PubMed  Google Scholar 

Atas E, Oberhuber M, Kenner L. The implications of PDK1-4 on tumor energy metabolism. Aggress Therapy Resist Front Oncol. 2020;10: 583217.

PubMed  Google Scholar 

Sylvers-Davie KL, Davies BSJ. Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab. 2021;321:E493-508.

CAS  PubMed  PubMed Central  Google Scholar 

Sagnol S, Yang Y, Bessin Y, Allemand F, Hapkova I, Notarnicola C, et al. Homodimerization of RBPMS2 through a new RRM-interaction motif is necessary to control smooth muscle plasticity. Nucleic Acids Res. 2014;42:10173–84.

CAS  PubMed  PubMed Central  Google Scholar 

Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409–35.

CAS  PubMed 

Comments (0)

No login
gif