Clostridioides difficile meets the adenosine system: the art of manipulating host homeostasis

Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ. 2007;14:1315–23.

CAS  PubMed  Google Scholar 

Mehta TR, Murala S, Thakkar MM. Adenosine. Cham: Springer International Publishing; 2022.

Google Scholar 

Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: the state of the art. Physiol Rev. 2018;98:1591–625. https://doi.org/10.1152/physrev.00049.2017.

CAS  PubMed  Google Scholar 

Layland J, Carrick D, Lee M, Oldroyd K, Berry C. Adenosine. JACC Cardiovasc Interv. 2014;7:581–91.

PubMed  Google Scholar 

Camici M, Garcia-Gil M, Tozzi M. The inside story of adenosine. Int J Mol Sci. 2018;19:784.

PubMed  PubMed Central  Google Scholar 

Yegutkin GG. Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta - Mol Cell Res. 2008;1783:673–94.

CAS  Google Scholar 

Robson SC, Wu Y, Sun X, Knosalla C, Dwyer K, Enjyoji K. Ectonucleotidases of CD39 family modulate vascular inflammation and thrombosis in transplantation. Semin Thromb Hemost. 2005;31:217–33. https://doi.org/10.1055/s-2005-869527.

CAS  PubMed  Google Scholar 

Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC. Ecto 5′-nucleotidase and nonspecific alkaline phosphatase: two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem. 2003;278:13468–79. https://doi.org/10.1074/jbc.M300569200.

CAS  PubMed  Google Scholar 

Young JD, Yao SYM, Baldwin JM, Cass CE, Baldwin SA. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Aspects Med. 2013;34:529–47. https://doi.org/10.1016/j.mam.2012.05.007.

CAS  PubMed  Google Scholar 

Vecchio EA, White PJ, May LT. The adenosine A2B G protein-coupled receptor: recent advances and therapeutic implications. Pharmacol Ther. 2019;198:20–33. https://doi.org/10.1016/j.pharmthera.2019.01.003.

CAS  PubMed  Google Scholar 

Burnstock G. Purine and purinergic receptors. Brain Neurosci Adv. 2018;2:239821281881749. https://doi.org/10.1177/2398212818817494.

Google Scholar 

Sheth S, Brito R, Mukherjea D, Rybak L, Ramkumar V. Adenosine receptors: expression, function and regulation. Int J Mol Sci. 2014;15:2024–52.

PubMed  PubMed Central  Google Scholar 

Antonioli L, Fornai M, Blandizzi C, Pacher P, Haskó G. Adenosine signaling and the immune system: when a lot could be too much. Immunol Lett. 2019;205:9–15. https://doi.org/10.1016/j.imlet.2018.04.006.

CAS  PubMed  Google Scholar 

Junger WG. Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol. 2011;11:201–12.

CAS  PubMed  PubMed Central  Google Scholar 

Fredholm BB. Physiological and pathophysiological roles of adenosine. Sleep Biol Rhythms. 2011;9:24–8. https://doi.org/10.1111/j.1479-8425.2010.00460.x.

Google Scholar 

Faas MM, Sáez T, de Vos P. Extracellular ATP and adenosine: the Yin and Yang in immune responses? Mol Aspects Med. 2017;55:9–19.

CAS  PubMed  Google Scholar 

Arab S, Hadjati J. Adenosine blockage in tumor microenvironment and improvement of cancer immunotherapy. Immune Netw. 2019;19:1–19. https://doi.org/10.4110/in.2019.19.e23.

Google Scholar 

Barletta KE, Ley K, Mehrad B. Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol. 2012;32:856–64. https://doi.org/10.1161/ATVBAHA.111.226845.

CAS  PubMed  PubMed Central  Google Scholar 

Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn R. Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest. 1986;78:760–70.

CAS  PubMed  PubMed Central  Google Scholar 

Sullivan GW, Lee DD, Ross WG, DiVietro JA, Lappas CM, Lawrence MB, et al. Activation of A2A adenosine receptors inhibits expression of α4/β1 integrin (very late antigen-4) on stimulated human neutrophils. J Leukoc Biol. 2004;75:127–34.

CAS  PubMed  Google Scholar 

Baghbani E, Noorolyai S, Shanehbandi D, Mokhtarzadeh A, Aghebati-Maleki L, Shahgoli VK, et al. Regulation of immune responses through CD39 and CD73 in cancer: novel checkpoints. Life Sci. 2021;282:119826. https://doi.org/10.1016/j.lfs.2021.119826.

CAS  PubMed  Google Scholar 

Sills TL, Azampanah A, Fletcher PJ. The adenosine A2A agonist CGS 21680 reverses the reduction in prepulse inhibition of the acoustic startle response induced by phencyclidine, but not by apomorphine and amphetamine. Psychopharmacology. 2001;156:187–93. https://doi.org/10.1007/s002130100777.

CAS  PubMed  Google Scholar 

Haskó G, Pacher P. Regulation of macrophage function by adenosine. Arterioscler Thromb Vasc Biol. 2012;32:865–9. https://doi.org/10.1161/ATVBAHA.111.226852.

CAS  PubMed  PubMed Central  Google Scholar 

Sag D, Carling D, Stout RD, Suttles J. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol. 2008;181:8633–41.

CAS  PubMed  Google Scholar 

Yang L, Zhang Y, Yang L. Adenosine signaling in tumor-associated macrophages and targeting adenosine signaling for cancer therapy. Cancer Biol Med. 2024;21:1–17.

Google Scholar 

Devi VJ, Radhika A, Biju PG. Adenosine receptor activation promotes macrophage class switching from LPS-induced acute inflammatory M1 to anti-inflammatory M2 phenotype. Immunobiology. 2023;228:152362. https://doi.org/10.1016/j.imbio.2023.152362.

CAS  PubMed  Google Scholar 

Silva-Vilches C, Ring S, Mahnke K. ATP and its metabolite adenosine as regulators of dendritic cell activity. Front Immunol. 2018;9:1–11. https://doi.org/10.3389/fimmu.2018.02581/full.

Google Scholar 

Ko MK, Shao H, Kaplan HJ, Sun D. CD73+ dendritic cells in cascading Th17 responses of experimental autoimmune uveitis-induced mice. Front Immunol. 2020;11:1–13. https://doi.org/10.3389/fimmu.2020.601272/full.

Google Scholar 

Panther E, Corinti S, Idzko M, Herouy Y, Napp M, la Sala A, et al. Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Blood. 2003;101:3985–90.

CAS  PubMed  Google Scholar 

Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood. 2008;112:1822–31.

CAS  PubMed  PubMed Central  Google Scholar 

Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev. 2017;276:121–44. https://doi.org/10.1111/imr.12528.

CAS  PubMed  PubMed Central  Google Scholar 

Longhi MS, Robson SC, Bernstein SH, Serra S, Deaglio S. Biological functions of ecto-enzymes in regulating extracellular adenosine levels in neoplastic and inflammatory disease states. J Mol Med. 2013;91:165–72. https://doi.org/10.1007/s00109-012-0991-z.

CAS  PubMed  Google Scholar 

Garcia-Garcia L, Olle L, Martin M, Roca-Ferrer J, Muñoz-Cano R. Adenosine signaling in mast cells and allergic diseases. Int J Mol Sci. 2021;22:5203.

CAS  PubMed  PubMed Central  Google Scholar 

Matsuoka I, Yoshida K, Ito M. Purinergic regulation of mast cell function: P2X4 receptor-mediated enhancement of allergic responses. J Pharmacol Sci. 2022;150:94–9. https://doi.org/10.1016/j.jphs.2022.07.005.

CAS  PubMed  Google Scholar 

Feng L, Cai Y, Zhu M, Xing L, Wang X. The yin and yang functions of extracellular ATP and adenosine in tumor immunity. Cancer Cell Int. 2020;20:110. https://doi.org/10.1186/s12935-020-01195-x.

CAS  PubMed  PubMed Central  Google Scholar 

Hegde S, Leader AM, Merad M. MDSC: markers, development, states, and unaddressed complexity. Immunity. 2021;54:875–84.

CAS  PubMed  PubMed Central  Google Scholar 

Li J, Wang L, Chen X, Li L, Li Y, Ping Y, et al. CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncoimmunology. 2017;6:1–13. https://doi.org/10.1080/2162402X.2017.1320011.

Comments (0)

No login
gif