Knirel Y.A., Anisimov A.P. 2012. Lipopolysaccharide of Yersinia pestis, the cause of plague: Structure, genetics, biological properties. Acta Naturae. 4 (3), 46–58.
Article CAS PubMed PubMed Central Google Scholar
Leo J.C., Skurnik M. 2011. Adhesins of human pathogens from the genus Yersinia. Adv. Exp. Med. Biol. 715, 1–15.
Article CAS PubMed Google Scholar
Konyshev I.V., Ivanov S.A., Kopylov P.Kh., Anisimov A.P., Dentovskaya S.V., Byvalov A.A. 2022. The role of Yersinia pestis antigens in adhesion to J774 macrophages: an optical trapping study. Appl. Biochem. M-icrobiol. 58, 394–400.
Park B.S., Lee J.O. 2013. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 45 (12), e66.
Article PubMed PubMed Central Google Scholar
Kim S.J., Kim H.M. 2017. Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14. BMB Rep. 50 (2), 55–57.
Article CAS PubMed PubMed Central Google Scholar
Matsuura M., Takahashi H., Watanabe H., Saito S., Kawahara K. 2010. Immunomodulatory effects of Yersinia pestis lipopolysaccharides on human macrophages. Clin. Vaccine Immunol. 17 (1), 49–55.
Article CAS PubMed Google Scholar
Yang K., He Y., Park C.G., Kang Y.S., Zhang P., Han Y., Cui Y., Bulgheresi S., Anisimov A.P., Dentovskaya S.V., Ying X., Jiang L., Ding H., Njiri O.A., Zhang S., Zheng G., Xia L., Kan B., Wang X., Jing H., Yan M., Li W., Wang Y., Xiamu X., Chen G., Ma D., Bartra S.S., Plano G.V., Klena J.D., Yang R., Skurnik M., Chen T. 2019. Yersinia pestis interacts with SIGNR1 (CD209b) for promoting host dissemination and infection. Front. Immunol. 10, 96.
Article CAS PubMed PubMed Central Google Scholar
Westphal O., Jann K. 1965. Bacterial lipopolysaccharides. Extraction with phenolwater and further applications of the procedure. Methodes Carbohydr. Chem. 5, 83–91.
Ebner A., Wildling L., Gruber H.J. 2019. Functionalization of AFM tips and supports for molecular recognition force spectroscopy and recognition imaging. Methods Mol. Biol. 1886, 117–151.
Article CAS PubMed Google Scholar
Pi J., Cai J. 2019. Cell topography and its quantitative imaging by AFM. In: Atomic force microscopy: Methods and protocols. Eds. Santos N.C., Carvalho F.A. New York: Humana New York, p. 99–113.
Hutter J.L., Chen J., Wan W.K., Uniyal S., Leabu M., Chan B.M.C. 2005. Atomic force microscopy investigation of the dependence of cellular elastic moduli on glutaraldehyde fixation. J. Microscopy. 219 (2), 61–68.
Vaure C., Liu Y. 2014. A comparative review of Toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 5, 316.
Article PubMed PubMed Central Google Scholar
Mahnke K., Becher E., Ricciardi-Castagnoli P., Luger T.A., Schwarz T., Grabbe S. 1997. CD14 is expressed by subsets of murine dendritic cells and upregulated by lipopolysaccharide. Adv. Exp. Med. Biol. 417, 145–159.
Sabroe I., Jones E.C., Usher L.R., Whyte M.K.B., Dower S.K. 2002. Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: A critical role for monocytes in leukocyte lipopolysaccharide responses. J. Immunol. 168, 4701–4710.
Article CAS PubMed Google Scholar
Choi S.-H., Harkewicz R., Lee J.H., Boullier A., Almazan F., Li A.C., Witztum J.L., Bae Y.S., Miller Y.I. 2009. Lipoprotein accumulation in macrophages via TLR4-dependent fluid phase uptake. Circ. Res. 104 (12), 1355–1363.
Article CAS PubMed PubMed Central Google Scholar
Wei M.-T., Hua K.-F., Hsu J., Karmenyan A., Tseng K.-Y., Wong C.-H., Hsu H.-Y., Chiou A. 2007. The interaction of lipopolysaccharide with membrane receptors on macrophages pretreated with extract of Reishi polysaccharides measured by optical tweezers. Optics Express. 15, 11020–11032.
Article CAS PubMed Google Scholar
Byvalov A.A., Belozerov V.S., Ananchenko B.A., Konyshev I.V. 2022. Specific and nonspecific interactions of Yersinia pseudotuberculosis lipopolysaccharide with monoclonal antibodies assessed by atomic force microscopy. Biophysics. 67, 856–866.
Arnal L., Longo G., Stupar P., Castez M.F., Cattelan N., Salvarezza R.C., Yantorno O.M., Kasas S., Vela M.E. 2015. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy. Nanoscale. 7 (41), 17563–17572.
Article CAS PubMed Google Scholar
Richter W., Vogel V., Howe J., Steiniger F., Brauser F., Koch M.H.J., Roessle M., Gutsmann T., Garidel P., Mäntele W., Brandenburg K. 2010. Morphology, size distribution, and aggregate structure of lipopolysaccharide and lipid A dispersions from enterobacterial origin. Innate Immunity. 17 (5), 1–12.
Bergstrand A., Svanberg C., Langton M., Nyden M. 2006. Aggregation behavior and size of lipopolysaccharide from Escherichia coli O55:B5. Colloids Surf. B Biointerfaces. 53 (1), 9–14.
Article CAS PubMed Google Scholar
Santos N.C., Silva A.C., Castanho M.A., Martins-Silva J., Saldanha C. 2003. Evaluation of lipopolysaccharide aggregation by light scattering spectroscopy. Chembiochem. 4 (1), 96–100.
Article CAS PubMed Google Scholar
Yang K., Park C.G., Cheong C., Bulgheresi S., Zhang S., Zhang P., He Y., Jiang L., Huang H., Ding H., Wu Y., Wang S., Zhang L., Li A., Xia L., Bartra S.S., Plano G.V., Skurnik M., Klena J.D., Chen T. 2015. Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination. Immunol. Cell Biol. 93 (9), 815–824.
Comments (0)