Membrane-Dependent Reactions of Blood Coagulation: Classical View and State-of-the-Art Concepts

Versteeg H.H., Heemskerk J.W.M., Levi M., Reitsma P.H. 2013. New fundamentals in hemostasis. Physiol. Rev. 93, 327–358.

Article  CAS  PubMed  Google Scholar 

Butylin A.A., Panteleev M.A., Ataullakhanov F.I. 2007. Spatial dynamics of blood coagulation. Ross. Khim. Zhurn. (Rus.). 51, 45–50.

CAS  Google Scholar 

Podoplelova N.A., Nechipurenko D.Y., Ignatova A.A., Sveshnikova A.N., Panteleev M.A. 2021. Procoagulant platelets: Mechanisms of generation and action. Hamostaseologie. 41, 146–153. https://doi.org/10.1055/a-1401-2706

Article  CAS  PubMed  Google Scholar 

Sveshnikova A., Stepanyan M., Panteleev M. 2022. Platelet functional responses and signalling: The molecular relationship. Part 1: Responses. Sistemnaya Biologia i Fiziologia (Rus.). 1, 14–23. https://doi.org/10.52455/sbpr.01.202101014

Article  Google Scholar 

Podoplelova N.A., Sulimov V.B., Ilin I.S., Tashilova A.S., Panteleev M.A., Ledeneva I. V., Shikhaliev K.S. 2020. Blood coagulation in the 21st century: Existing knowledge, current strategies for treatment and perspective. Pediatr. Hematol. Immunopathol. 19, 139–157. https://doi.org/10.24287/1726-1708-2020-19-1-139-157

Article  Google Scholar 

Protty M.B., Jenkins P.V., Collins P.W., O’Donnell V.B. 2022. The role of procoagulant phospholipids on the surface of circulating blood cells in thrombosis and haemostasis. Open Biol. 12, 210318. https://doi.org/10.1098/rsob.210318

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morrissey J.H. 1996. Plasma factor VIIa: Measurement and potential clinical significance. Haemostasis. 26 Suppl. 1, 66–71. https://doi.org/10.1159/000217243

Article  CAS  PubMed  Google Scholar 

Kovalenko T.A., Panteleev M.A., Sveshnikova A.N. 2017. The mechanisms and kinetics of initiation of blood coagulation by the extrinsic tenase complex. Biophysics (Oxf). 62, 291–300. https://doi.org/10.1134/S0006350917020105

Article  CAS  Google Scholar 

Butenas S. 2012. Tissue factor structure and function. Scientifica (Cairo). 2012, 964862. https://doi.org/10.6064/2012/964862

Zelaya H., Rothmeier A.S., Ruf W. 2018. Tissue factor at the crossroad of coagulation and cell signaling. J. Thromb. Haemost. 16, 1941–1952. https://doi.org/10.1111/jth.14246

Article  CAS  PubMed  Google Scholar 

Smith S.B., Gailani D. 2008. Update on the physiology and pathology of factor IX activation by factor XIa. Expert Rev. Hematol. 1, 87–98. https://doi.org/10.1586/17474086.1.1.87

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu G., Broze G.J.J., Krishnaswamy S. 2004. Formation of factors IXa and Xa by the extrinsic pathway: Differential regulation by tissue factor pathway inhibitor and antithrombin III. J. Biol. Chem. 279, 17 241–17 249. https://doi.org/10.1074/jbc.M312827200

Article  CAS  Google Scholar 

Ruben E.A., Summers B., Rau M.J., Fitzpatrick J.A.J., Di Cera E. 2022. Cryo-EM structure of the prothrombin-prothrombinase complex. Blood. 139, 3463–3473. https://doi.org/10.1182/blood.2022015807

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brufatto N., Nesheim M.E. 2003. Analysis of the kinetics of prothrombin activation and evidence that two equilibrating forms of prothrombinase are involved in the process. J. Biol. Chem. 278, 6755–6764. https://doi.org/10.1074/jbc.M206413200

Article  CAS  PubMed  Google Scholar 

Panteleev M.A., Ananyeva N.M., Greco N.J., Ataullakhanov F.I., Saenko E.L. 2006. Factor VIIIa regulates substrate delivery to the intrinsic factor X-activating complex. FEBS J. 273, 374–387.

Article  CAS  PubMed  Google Scholar 

Childers K.C., Peters S.C., Lollar P., Spencer H.T., Doering C.B., Spiegel P.C. 2022. SAXS analysis of the intrinsic tenase complex bound to a lipid nanodisc highlights intermolecular contacts between factors VIIIa/IXa. Blood Adv. 6, 3240–3254. https://doi.org/10.1182/bloodadvances.2021005874

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weisel J.W., Litvinov R.I. 2017. Fibrin formation, structure and properties. Subcell. Biochem. 82, 405–456. https://doi.org/10.1007/978-3-319-49674-0_13

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chelushkin M.A., Panteleev M.A., Sveshnikova A.N. 2017. Activation of the contact pathway of blood coagulation on the circulating microparticles may explain blood plasma coagulation induced by dilution. Biochem. (Moscow), Suppl. Ser. A Membr. Cell Biol. 11, 130–143. https://doi.org/10.1134/S1990747817020040

Article  Google Scholar 

Terent’eva V.A., Sveshnikova A.N., Panteleev M.A. 2017. Biophysical mechanisms of contact activation of blood-plasma clotting. Biophysics (Oxf). 62, 742–753. https://doi.org/10.1134/S0006350917050232

Article  Google Scholar 

Wu Y. 2015. Contact pathway of coagulation and inflammation. Thromb. J. 13, 17. https://doi.org/10.1186/s12959-015-0048-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balandina A.N., Shibeko A.M., Kireev D.A., Novikova A.A., Shmirev I.I., Panteleev M.A., Ataullakhanov F.I. 2011. Positive feedback loops for factor V and factor VII activation supply sensitivity to local surface tissue factor density during blood coagulation. Biophys. J. 101, 1816–1824. https://doi.org/10.1016/j.bpj.2011.08.034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lakshmanan H.H.S., Estonilo A., Reitsma S.E., Melrose A.R., Subramanian J., Zheng T.J., Maddala J., Tucker E.I., Gailani D., McCarty O.J.T., Jurney P.L., Puy C. 2022. Revised model of the tissue factor pathway of thrombin generation: Role of the feedback activation of FXI. J. Thromb. Haemost. 20, 1350–1363. https://doi.org/10.1111/jth.15716

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shibeko A.M., Lobanova E.S., Panteleev M.A., Ataullakhanov F.I. 2010. Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa. BMC Syst. Biol. 4, 5. https://doi.org/10.1186/1752-0509-4-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amiral J., Seghatchian J. 2018. Revisiting antithrombin in health and disease, congenital deficiencies and genetic variants, and laboratory studies on α and β forms. Transfus. Apher. Sci. 57, 291–297. https://doi.org/10.1016/j.transci.2018.04.010

Article  PubMed  Google Scholar 

Dahlbäck B., Villoutreix B.O. 2005. Regulation of blood coagulation by the protein C anticoagulant pathway: Novel insights into structure-function relationships and molecular recognition. Arterioscler. Thromb. Vasc. Biol. 25, 1311–1320. https://doi.org/10.1161/01.ATV.0000168421.13467.82

Article  CAS  PubMed  Google Scholar 

Adams M. 2012. Tissue factor pathway inhibitor: New insights into an old inhibitor. Semin. Thromb. Hemost. 38, 129–134. https://doi.org/10.1055/s-0032-1301410

Article  CAS  PubMed  Google Scholar 

Almawi W.Y., Al-Shaikh F.S., Melemedjian O.K., Almawi A.W. 2013. Protein Z, an anticoagulant protein with expanding role in reproductive biology. Reproduction. 146, R73–R80. https://doi.org/10.1530/REP-13-0072

Article  CAS  PubMed  Google Scholar 

Enkavi G., Javanainen M., Kulig W., Róg T., Vattulainen I. 2019. Multiscale simulations of biological membranes: The challenge to understand biological phenomena in a living substance. Chem. Rev. 119, 5607–5774. https://doi.org/10.1021/acs.chemrev.8b00538

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vance J.E. 2015. Phospholipid synthesis and transport in mammalian cells. Traffic. 16, 1–18. https://doi.org/10.1111/tra.12230

Article  CAS 

Comments (0)

No login
gif