Drossman D.A., Camilleri M., Mayer E.A., Whitehead W.E. 2002. AGA Technical review on irritable bowel syndrome. Gastroenterol. 123 (6), 2108–2131. https://doi.org/10.1053/gast.2002.37095
Ford A.C., Lacy B.E., Harris L.A., Quigley E.M.M., Moayyedi P. 2019. Effect of antidepressants and psychological therapies in irritable bowel syndrome: An updated systematic review and meta-analysis. Am. J. Gastroenterol. 114 (1), 21–39. https://doi.org/10.1038/s41395-018-0222-5
Huang C. 2023. Effects of NNOS inhibition on the Escherichia coli and butyrate-producing bacteria in IBS rats with visceral hypersensitivity. Research Square. V1, 1–18. https://doi.org/10.21203/rs.3.rs-2964008/v1
Cryan J.F., Dinan T.G. 2012. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712. https://doi.org/10.1038/nrn3346
Article PubMed CAS Google Scholar
Collins S.M., Surette M., Bercik P. 2012. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 10, 735–742. https://doi.org/10.1038/nrmicro2876
Article PubMed CAS Google Scholar
McEvoy M.A., Attia J.R., Oldmeadow C., Holliday E., Smith W.T., Mangoni A.A., Peel R., Hancock S.J., Walker M.M., Talley N.J. 2021. Serum L-arginine and endogenous methylarginine concentrations predict irritable bowel syndrome in adults: A nested case-control study. United Eur. Gastroenterol. J. 9 (7), 809–818. https://doi.org/10.1002/ueg2.12137
Pittayanon R., Lau J.T., Yuan Y., Leontiadis G.I., Tse F., Surette M., Moayyedi P. 2019. Gut microbiota in patients with irritable bowel syndrome – a systematic review. Gastroenterology 157 (1), 97–108. https://doi.org/10.1053/j.gastro.2019.03.049
Distrutti E., Monaldi L., Ricci P., Fiorucci S. 2016. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J. Gastroenterol. 22 (7), 2219–2241. https://doi.org/10.3748/wjg.v22.i7.2219
Article PubMed PubMed Central CAS Google Scholar
Cherbut C., Ferrier L., Rozé C., Anini Y., Blottière H., Lecannu G., Galmiche J.P. 1998. Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. Am. J. Physiol., Gastrointest. Liver Physiol. 275 (6), G1415–G1422. https://doi.org/10.1152/ajpgi.1998.275.6.g1415
Dass N.B., John A.K., Bassil A.K., Crumbley C.W., Shehee W.R., Maurio F.P., Moore G.B.T., Taylor C.M., Sanger G.J. 2007. The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation. Neurogastroenterol. Motil. 19 (1), 66–74. https://doi.org/10.1111/j.1365-2982.2006.00853.x
Article PubMed CAS Google Scholar
Ono S., Karaki S.I., Kuwahara A. 2004. Short-chain fatty acids decrease the frequency of spontaneous contractions of longitudinal muscle via enteric nerves in rat distal colon. Jpn. J. Physiol. 54 (5), 483–493. https://doi.org/10.2170/jjphysiol.54.483
Article PubMed CAS Google Scholar
Squires P.E., Rumsey R.D.E., Edwards C.A., Read N.W. 1992. Effect of short-chain fatty acids on contractile activity and fluid flow in rat colon in vitro. Am. J. Physiol., Gastrointest. Liver Physiol. 262 (5), G813–G817. https://doi.org/10.1152/ajpgi.1992.262.5.g813
Suply E., de Vries P., Soret R., Cossais F., Neunlist M. 2012. Butyrate enemas enhance both cholinergic and nitrergic phenotype of myenteric neurons and neuromuscular transmission in newborn rat colon. Am. J. Physiol., Gastrointest. Liver Physiol. 302 (12), G1373–G1380. https://doi.org/10.1152/ajpgi.00338.2011
Article PubMed CAS Google Scholar
Fukumoto S., Tatewaki M., Yamada T., Fujimiya M., Mantyh C., Voss M., Eubanks S., Harris M., Pappas T.N., Takahashi T. 2003. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol., Regul. Integr. Comp. Physiol. 284 (5), R1269–1276. https://doi.org/10.1152/ajpregu.00442.2002
Article PubMed CAS Google Scholar
Hurst N.R., Kendig D.M., Murthy K.S., Grider J.R. 2014. The short chain fatty acids, butyrate and propionate, have differential effects on the motility of the guinea pig colon. Neurogastroenterol. Motil. 26 (11), 1586–1596. https://doi.org/10.1111/nmo.12425
Article PubMed PubMed Central CAS Google Scholar
Dalile B., Van Oudenhove L., Vervliet B., Verbeke K. 2019. the role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478. https://doi.org/10.1038/s41575-019-0157-3
Ghatta S., Lozinskaya I., Lin Z., Gordon E., Willette R.N., Brooks D.P., Xu X. 2007. Acetic acid opens large-conductance Ca2+-activated K+ channels in guinea pig detrusor smooth muscle cells. Eur. J. Pharmacol. 563 (1–3), 203–208. https://doi.org/10.1016/j.ejphar.2007.02.037
Article PubMed CAS Google Scholar
Ghazali R., Patel V.B. 2016. Alcohol metabolism: General aspects. Mol. Asp. Alcohol Nutr. A Vol. Mol. Nutr. Ser. 17–21. https://doi.org/10.1016/B978-0-12-800773-0.00002-1
Zhang W., Feng X., Zhang Y., Sun M., Li L., Gao Q., Tang J., Zhang P., Lv J., Zhou X., Xu Z. 2020. Prenatal hypoxia inhibited propionate-evoked BK channels of mesenteric artery smooth muscle cells in offspring. J. Cell. Mol. Med. 24 (5), 3192–3202. https://doi.org/10.1111/jcmm.14994
Article PubMed PubMed Central CAS Google Scholar
Hayashi Y., Nakanishi H. 2015. BK channel in microglia as a potent therapeutic molecular target for neuropathic pain. J. Oral Biosci. 57 (3), 131–134. https://doi.org/10.1016/J.JOB.2015.03.001
Haschke G., Schäfer H., Diener M. 2002. Effect of butyrate on membrane potential, ionic currents and intracellular Ca2+ concentration in cultured rat myenteric neurones. Neurogastroenterol. Motil. 14 (2), 133–142. https://doi.org/10.1046/j.1365-2982.2002.00312.x
Article PubMed CAS Google Scholar
Yang B., Zhou X., Lan C. 2015. Changes of cytokine levels in a mouse model of post-infectious irritable bowel syndrome. BMC Gastroenterol. 15 (43), 1–7. https://doi.org/10.1186/s12876-015-0272-8
Temiz T.K., Demir O., Simsek F., Kaplan Y.C., Bahceci S., Karadas B., Celik A., Koyluoglu G. 2016. Effect of nitrergic system on colonic motility in a rat model of irritable bowel syndrome. Indian J. Pharmacol. 48 (4), 424–429. https://doi.org/10.4103/0253-7613.186189
Article PubMed PubMed Central CAS Google Scholar
Shaidullov I.F., Sorokina D.M., Sitdikov F.G., Hermann A., Abdulkhakov S.R., Sitdikova G.F. 2021. Short chain fatty acids and colon motility in a mouse model of irritable bowel syndrome. BMC Gastroenterol. 21 (37), 1–12. https://doi.org/10.1186/s12876-021-01613-y
Shaidullov I.F., Shafigullin M.U., Gabitova L.M., Sitdikov F.G., Zefirov A.L., Sitdikova G.F. 2018. Role of potassium channels in the effects of hydrogen sulfide on contractility of gastric smooth muscle cells in rats. J. Evol. Biochem. Physiol. 54, 400–407. https://doi.org/10.1134/S0022093018050083
Yarullina D.R., Shafigullin M.U., Sakulin K.A., Arzamastseva A.A., Shaidullov I.F., Markelova M.I., Grigoryeva T. V., Karpukhin O.Y., Sitdikova G.F. 2020. Characterization of gut contractility and microbiota in patients with severe chronic constipation. PLoS One 15 (7), 1–19. https://doi.org/10.1371/journal.pone.0235985
Shaidullov I., Bouchareb D., Sorokina D., Sitdikova G. 2024. Nitric oxide in the mechanisms of inhibitory effects of sodium butyrate on colon contractions in a mouse model of irritable bowel syndrome. Naunyn. Schmiedebergs. Arch. Pharmacol. 398, 1905–1914. https://doi.org/10.1007/S00210-024-03403-1
Zhang M., Leung F.P., Huang Y., Bian Z.X. 2010. Increased colonic motility in a rat model of irritable bowel syndrome is associated with up-regulation of L-type calcium channels in colonic smooth muscle cells. Neurogastroenterol. Motil. 22 (5), e162–e170. https://doi.org/10.1111/j.1365-2982.2009.01467.x
Article PubMed CAS Google Scholar
Farzaei M.H., Bahramsoltani R., Abdollahi M., Rahimi R. 2016. The role of visceral hypersensitivity in irritable bowel syndrome: Pharmacological targets and novel treatments. J. Neurogastroenterol. Motil. 22 (4), 558–574. https://doi.org/10.5056/jnm16001
Comments (0)