Mechanisms of Lipid-Mediated Regulation of the Pore-Forming Activity of Antimicrobial Agents: Studies on Planar Lipid Bilayers

Andreoli T.E. 1974. Planar lipid bilayer membranes. Methods Enzymol. 32, 513–539.

Article  CAS  PubMed  Google Scholar 

Hanke W., Schlue W.-R. 1993. Biochemical preparations for planar lipid bilayer experiments. In: Planar lipid bilayers. Hanke W., Schlue W.-R. Elsevier: Academic press limited, p. 24–59.

Mueller P., Rudin D.O., Tien H.Ti., Wescott W.C. 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 194, 979–980. https://doi.org/10.1038/194979a0

Article  CAS  PubMed  Google Scholar 

Mueller P., Rudin D.O. 1986. Induced excitability in reconstituted cell membrane structure. J. Theoret. Biol. 4, 268–280.

Article  Google Scholar 

Tosaka T., Kamiya K. 2023. Function Investigations and Applications of membrane proteins on artificial lipid membranes. Int. J. Mol. Sci. 24 (8), 7231. https://doi.org/10.3390/ijms24087231

Article  CAS  PubMed  PubMed Central  Google Scholar 

White S.H. 1978. Formation of “solvent-free” black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophys. J. 23 (3), 337–347. https://doi.org/10.1016/S0006-3495(78)85453-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

White S.H. 1974. Temperature-dependent structural changes in planar bilayer membranes: Solvent “freeze-out”. Biochim. Biophys. Acta. 356 (1), 8–16. https://doi.org/10.1016/0005-2736(74)90289-2

Article  CAS  PubMed  Google Scholar 

Vodyanoy V., Murphy R.B. 1982. Solvent-free lipid bimolecular membranes of large surface area. Biochim. Biophys. Acta. 687 (2), 189–194. https://doi.org/10.1016/0005-2736(82)90545-4

Article  CAS  PubMed  Google Scholar 

Montal M., Mueller P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA. 69 (12), 3561–3566. https://doi.org/10.1073/pnas.69.12.3561

Article  CAS  PubMed  PubMed Central  Google Scholar 

Funakoshi K., Suzuki H., Takeuchi S. 2006. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem. 78 (24), 8169–8174. https://doi.org/10.1021/ac0613479

Article  CAS  PubMed  Google Scholar 

Oiki S., Iwamoto M. 2018. Lipid bilayers manipulated through monolayer technologies for studies of channel-membrane interplay. Biol. Pharm. Bull. 41 (3), 303–311. https://doi.org/10.1248/bpb.b17-00708

Article  CAS  PubMed  Google Scholar 

Coronado R., Latorre R. 1983. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys. J. 43 (2), 231–236. https://doi.org/10.1016/S0006-3495(83)84343-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarges R., Witkop B. Gramicidin A. 1965. V. The structure of valine- and isoleucine-gramicidin A. J. Am. Chem. Soc. 87, 2011–2020. https://doi.org/10.1021/ja01087a027

Article  CAS  PubMed  Google Scholar 

Sarges R., Witkop B. Gramicidin A. 1965. VII. The structure of valine- and isoleucine-gramicidin B. J. Am. Chem. Soc. 87, 2027–2030. https://doi.org/10.1021/ja01087a029

Article  CAS  PubMed  Google Scholar 

Urry D.W. 1971. The gramicidin A transmembrane channel: A proposed pi(L,D) helix. Proc. Natl. Acad. Sci. USA. 68 (3), 672–676. https://doi.org/10.1073/pnas.68.3.672

Article  CAS  PubMed  PubMed Central  Google Scholar 

Urry D.W., Long M.M., Jacobs M., Harris R.D. 1975. Conformation and molecular mechanisms of carriers and channels. Ann. N. Y. Acad. Sci. 264, 203–220. https://doi.org/10.1111/j.1749-6632.1975.tb31484.x

Article  CAS  PubMed  Google Scholar 

Veatch W.R., Fossel E.T., Blout E.R. 1974. The conformation of gramicidin A. Biochemistry. 13 (26), 5249–5256. https://doi.org/10.1021/bi00723a001

Article  CAS  PubMed  Google Scholar 

Hladky S.B., Haydon D.A. 1970. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature. 225 (5231), 451–453. https://doi.org/10.1038/225451a0

Article  CAS  PubMed  Google Scholar 

Antonov V.F., Petrov V.V., Molnar A.A., Predvoditelev D.A., Ivanov A.S. 1980. The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature. Nature. 283 (5747), 585–586. https://doi.org/10.1038/283585a0

Article  CAS  PubMed  Google Scholar 

Elliott J.R., Needham D., Dilger J.P., Brandt O., Haydon D.A. 1985. A quantitative explanation of the effects of some alcohols on gramicidin single-channel lifetime. Biochim. Biophys. Acta. 814 (2), 401–404. https://doi.org/10.1016/0005-2736(85)90462-6

Article  CAS  PubMed  Google Scholar 

Krasne S., Eisenman G., Szabo G. 1971. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin. Science. 174 (4007), 412–415. https://doi.org/10.1126/science.174.4007.412

Article  CAS  PubMed  Google Scholar 

Roeske R.W., Hrinyo-Pavlina T.P., Pottorf R.S., Bridal T., Jin X.Z. Busath D. 1989. Synthesis and channel properties of [Tau 16]gramicidin A. Biochim. Biophys. Acta. 982 (2), 223–227. https://doi.org/10.1016/0005-2736(89)90058-8

Article  CAS  PubMed  Google Scholar 

O’Connell A.M., Koeppe R.E.2nd, Andersen O.S. 1990. Kinetics of gramicidin channel formation in lipid bilayers: Transmembrane monomer association. Science. 250 (4985), 1256–1259. https://doi.org/10.1126/science.1700867

Article  PubMed  Google Scholar 

Kelkar D.A., Chattopadhyay A. 2007. The gramicidin ion channel: A model membrane protein. Biochim. Biophys. Acta. 1768 (9), 2011–2025. https://doi.org/10.1016/j.bbamem.2007.05.011

Sun Z., Barboiu M. 2019. Artificial Gramicidins. Front. Chem. 7, 611. https://doi.org/10.3389/fchem.2019.00611

Article  CAS  PubMed  PubMed Central  Google Scholar 

Myers V.B., Haydon D.A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. Biochim. Biophys. Acta. 274 (2), 313–322. https://doi.org/10.1016/0005-2736(72)90179-4

Article  CAS  PubMed  Google Scholar 

Urban B.W., Hladky S.B., Haydon D.A. 1980. Ion movements in gramicidin pores. An example of single-file transport. Biochim. Biophys. Acta. 602 (2), 331–354. https://doi.org/10.1016/0005-2736(80)90316-8

Article  CAS  PubMed  Google Scholar 

Seoh S.A., Busath D. 1993. The permeation properties of small organic cations in gramicidin A channels. Biophys. J. 64 (4), 1017–1028. https://doi.org/10.1016/S0006-3495(93)81467-X

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bamberg E., Läuger P. 1977. Blocking of the gramicidin channel by divalent cations. J. Membr. Biol. 35, 351–375. https://doi.org/10.1007/BF01869959

Article  CAS  Google Scholar 

Hemsley G., Busath D. 1991. Small iminium ions block gramicidin channels in lipid bilayers. Biophys. J. 59 (4), 901–907. https://doi.org/10.1016/S0006-3495(91)82303-7

Article  CAS  PubMed 

Comments (0)

No login
gif