Maxfield F.R., van Meer G. 2010. Cholesterol, the central lipid of mammalian cells. Curr. Opin. Cell Biol. 22 (4), 422–429. https://doi.org/10.1016/j.ceb.2010.05.004
Article CAS PubMed PubMed Central Google Scholar
Song Y., Kenworthy A.K., Sanders C.R. 2014. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Science. 23, 1–22. https://doi.org/10.1002/pro.2385
Article CAS PubMed Google Scholar
Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387, 569–572.
Article CAS PubMed Google Scholar
Ali O., Szabó A. 2023. Review of eukaryote cellular membrane lipid composition, with special attention to the fatty acids. Int. J. Mol. Sci. 24 (21), 15693. https://doi.org/10.3390/ijms242115693
Article CAS PubMed PubMed Central Google Scholar
van Meer G., Voelker D.R., Feigenson G.W. 2008. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112−124.
Article CAS PubMed PubMed Central Google Scholar
Huang Z., London E. 2016. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria. Chem. Phys. Lipids. 199, 11–16.
Article CAS PubMed PubMed Central Google Scholar
Guzmán-Flores J.E., Steinemann-Hernández L., González de la Vara L.E., Gavilanes-Ruiz M., Romeo T., Alvarez A.F., Georgellis D. 2019. Proteomic analysis of Escherichia coli detergent-resistant membranes (DRM). PLoS One, 14, e0223794.
Article PubMed PubMed Central Google Scholar
Rohmer M., Bouvier-Nave P., Ourisson G. 1984. Distribution of hopanoid triterpenes in prokaryotes. Microbiology. 130, 1137–1150.
Sáenz J.P., Grosser D., Bradley A.S., Lagny T.J., Lavrynenko O., Broda M., Simons K. 2015. Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc. Natl. Acad. Sci. USA, 112, 11 971–11 976.
Bi Y., Guo P., Liu L., Chen L., Zhang W. 2023. Elucidation of sterol biosynthesis pathway and its co-regulation with fatty acid biosynthesis in the oleaginous marine protist Schizochytrium sp. Front. Bioeng. Biotechnol. 11, 1188461. https://doi.org/10.3389/fbioe.2023.1188461
Article PubMed PubMed Central Google Scholar
Planas-Riverola A., Gupta A., Betegón-Putze I., Bosch N., Ibañes M., Caño-Delgado A.I. 2019. Brassinosteroid signaling in plant development and adaptation to stress. Development. 146 (5), dev151894. https://doi.org/10.1242/dev.151894
Article CAS PubMed PubMed Central Google Scholar
Manghwar H., Hussain A., Ali Q., Liu F. 2022. Brassinosteroids (BRs) role in plant development and coping with different stresses. Int. J. Mol. Sci. 23 (3), 1012. https://doi.org/10.3390/ijms23031012
Article CAS PubMed PubMed Central Google Scholar
Myers J.L., Porter M., Narwold N., Bhat K., Dauwalder B., Roman G. 2021. Mutants of the white ABCG transporter in Drosophila melanogaster have deficient olfactory learning and cholesterol homeostasis. Int. J. Mol. Sci. 22 (23), 12967. https://doi.org/10.3390/ijms222312967
Article CAS PubMed PubMed Central Google Scholar
Dunina-Barkovskaya A. 2022. Cholesterol-dependent cellular processes and peptides containing cholesterol-binding motifs: Possible implications for medicine. Med. Res. Arch. 11 (1). https://doi.org/10.18103/mra.v11i1.3532
Weber L.W., Boll M., Stampfl A. 2004. Maintaining cholesterol homeostasis: Sterol regulatory element-binding proteins. World J. Gastroenterol. 10 (21), 3081–3087. https://doi.org/10.3748/wjg.v10.i21.3081
Article CAS PubMed PubMed Central Google Scholar
Martín M.G., Pfrieger F., Dotti C.G. 2014. Cholesterol in brain disease: Sometimes determinant and frequently implicated. EMBO Rep. 15 (10), 1036–1053. https://doi.org/10.15252/embr.201439225
Article CAS PubMed PubMed Central Google Scholar
Martín-Segura A., Ahmed T., Casadomé-Perales Á., Palomares-Perez I., Palomer E., Kerstens A., Munck S., Balschun D., Dotti C.G. 2019. Age-associated cholesterol reduction triggers brain insulin resistance by facilitating ligand-independent receptor activation and pathway desensitization. Aging Cell. 18 (3), e12932. https://doi.org/10.1111/acel.12932
Article CAS PubMed PubMed Central Google Scholar
Corradi V., Mendez-Villuendas E., Ingólfsson H.I., Gu R.-X., et al. 2018. Lipid−protein interactions are unique fingerprints for membrane proteins. ACS Cent. Sci. 4, 709−717. https://doi.org/10.1021/acscentsci.8b00143
Article CAS PubMed PubMed Central Google Scholar
Grouleff J., Irudayam S.J., Skeby K.K., Schiøtt B. 2015. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim. Biophys. Acta–Biomembranes. 1848 (9), 1783−1795. https://doi.org/10.1016/j.bbamem.2015.03.029
Mukherjee S., Zha X., Tabas I., Maxfield F.R. 1998. Cholesterol distribution in living cells: Fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys. J. 75, 1915−1925. https://doi.org/10.1016/S0006-3495(98)77632-5
Article CAS PubMed PubMed Central Google Scholar
Nyholm T.K. 2015. Lipid-protein interplay and lateral organization in biomembranes. Chem. Phys. Lipids. 189, 48−55.
Article CAS PubMed Google Scholar
Nyholm T.K., Ozdirekcan S., Killian J.A. 2007. How protein transmembrane segments sense the lipid environment. Biochemistry. 46, 1457–1465.
Article CAS PubMed Google Scholar
Coskun U., Simons K. 2011. Cell membranes: The lipid perspective. Structure. 19 (11), 1543–1548. https://doi.org/10.1016/j.str.2011.10.010
Article CAS PubMed Google Scholar
Sezgin E., Levental I., Mayor S., Eggeling C. 2017. The mystery of membrane organization: Composition, regulation, and roles of lipid rafts. Nat. Rev. Mol. Cell. Biol. 18, 361–374.
Article CAS PubMed PubMed Central Google Scholar
Steck T.L., Ali Tabei S.M., Lange Y., 2024. Estimating the cholesterol affinity of integral membrane proteins from experimental data. Biochemistry. 63 (1), 19–26. https://doi.org/10.1021/acs.biochem.3c00567
Article CAS PubMed Google Scholar
Steck T.L., Lange Y. 2018. Transverse distribution of plasma membrane bilayer cholesterol: Picking sides. Traffic. 19 (10), 750–760. https://doi.org/10.1111/tra.12586
Article CAS PubMed Google Scholar
Maekawa M., Fairn G.D. 2015. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J. Cell Sci. 128 (7), 1422–1433.
Article CAS PubMed Google Scholar
Ridsdale A., Denis M., Gougeon P.Y., Ngsee J.K., Presley J.F., Zha X. 2006. Cholesterol is required for efficient endoplasmic reticulum-to-Golgi transport of secretory membrane proteins. Mol. Biol. Cell. 17 (4), 1593–1605. https://doi.org/10.1091/mbc.e05-02-0100
Article CAS PubMed PubMed Central Google Scholar
Muller M.P., Jiang T., Sun C., Lihan M., Pant S., Mahinthichaichan P., Trifan A., Tajkhorshid E. 2019. Characterization of lipid-protein interactions and lipid-mediated modulation of membrane protein function through molecular simulation. Chem. Rev. 19, 6086–6161. https://doi.org/10.1021/acs.chemrev.8b00608
Comments (0)