Cell Membrane Cholesterol and Regulation of Cellular Processes: New and the Same Old Thing

Maxfield F.R., van Meer G. 2010. Cholesterol, the central lipid of mammalian cells. Curr. Opin. Cell Biol. 22 (4), 422–429. https://doi.org/10.1016/j.ceb.2010.05.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song Y., Kenworthy A.K., Sanders C.R. 2014. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Science. 23, 1–22. https://doi.org/10.1002/pro.2385

Article  CAS  PubMed  Google Scholar 

Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387, 569–572.

Article  CAS  PubMed  Google Scholar 

Ali O., Szabó A. 2023. Review of eukaryote cellular membrane lipid composition, with special attention to the fatty acids. Int. J. Mol. Sci. 24 (21), 15693. https://doi.org/10.3390/ijms242115693

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Meer G., Voelker D.R., Feigenson G.W. 2008. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112−124.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang Z., London E. 2016. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria. Chem. Phys. Lipids. 199, 11–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guzmán-Flores J.E., Steinemann-Hernández L., González de la Vara L.E., Gavilanes-Ruiz M., Romeo T., Alvarez A.F., Georgellis D. 2019. Proteomic analysis of Escherichia coli detergent-resistant membranes (DRM). PLoS One, 14, e0223794.

Article  PubMed  PubMed Central  Google Scholar 

Rohmer M., Bouvier-Nave P., Ourisson G. 1984. Distribution of hopanoid triterpenes in prokaryotes. Microbiology. 130, 1137–1150.

Article  CAS  Google Scholar 

Sáenz J.P., Grosser D., Bradley A.S., Lagny T.J., Lavrynenko O., Broda M., Simons K. 2015. Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc. Natl. Acad. Sci. USA, 112, 11 971–11 976.

Article  Google Scholar 

Bi Y., Guo P., Liu L., Chen L., Zhang W. 2023. Elucidation of sterol biosynthesis pathway and its co-regulation with fatty acid biosynthesis in the oleaginous marine protist Schizochytrium sp. Front. Bioeng. Biotechnol. 11, 1188461. https://doi.org/10.3389/fbioe.2023.1188461

Article  PubMed  PubMed Central  Google Scholar 

Planas-Riverola A., Gupta A., Betegón-Putze I., Bosch N., Ibañes M., Caño-Delgado A.I. 2019. Brassinosteroid signaling in plant development and adaptation to stress. Development. 146 (5), dev151894. https://doi.org/10.1242/dev.151894

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manghwar H., Hussain A., Ali Q., Liu F. 2022. Brassinosteroids (BRs) role in plant development and coping with different stresses. Int. J. Mol. Sci. 23 (3), 1012. https://doi.org/10.3390/ijms23031012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Myers J.L., Porter M., Narwold N., Bhat K., Dauwalder B., Roman G. 2021. Mutants of the white ABCG transporter in Drosophila melanogaster have deficient olfactory learning and cholesterol homeostasis. Int. J. Mol. Sci. 22 (23), 12967. https://doi.org/10.3390/ijms222312967

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunina-Barkovskaya A. 2022. Cholesterol-dependent cellular processes and peptides containing cholesterol-binding motifs: Possible implications for medicine. Med. Res. Arch. 11 (1). https://doi.org/10.18103/mra.v11i1.3532

Weber L.W., Boll M., Stampfl A. 2004. Maintaining cholesterol homeostasis: Sterol regulatory element-binding proteins. World J. Gastroenterol. 10 (21), 3081–3087. https://doi.org/10.3748/wjg.v10.i21.3081

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martín M.G., Pfrieger F., Dotti C.G. 2014. Cholesterol in brain disease: Sometimes determinant and frequently implicated. EMBO Rep. 15 (10), 1036–1053. https://doi.org/10.15252/embr.201439225

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martín-Segura A., Ahmed T., Casadomé-Perales Á., Palomares-Perez I., Palomer E., Kerstens A., Munck S., Balschun D., Dotti C.G. 2019. Age-associated cholesterol reduction triggers brain insulin resistance by facilitating ligand-independent receptor activation and pathway desensitization. Aging Cell. 18 (3), e12932. https://doi.org/10.1111/acel.12932

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corradi V., Mendez-Villuendas E., Ingólfsson H.I., Gu R.-X., et al. 2018. Lipid−protein interactions are unique fingerprints for membrane proteins. ACS Cent. Sci. 4, 709−717. https://doi.org/10.1021/acscentsci.8b00143

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grouleff J., Irudayam S.J., Skeby K.K., Schiøtt B. 2015. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim. Biophys. Acta–Biomembranes. 1848 (9), 1783−1795. https://doi.org/10.1016/j.bbamem.2015.03.029

Mukherjee S., Zha X., Tabas I., Maxfield F.R. 1998. Cholesterol distribution in living cells: Fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys. J. 75, 1915−1925. https://doi.org/10.1016/S0006-3495(98)77632-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nyholm T.K. 2015. Lipid-protein interplay and lateral organization in biomembranes. Chem. Phys. Lipids. 189, 48−55.

Article  CAS  PubMed  Google Scholar 

Nyholm T.K., Ozdirekcan S., Killian J.A. 2007. How protein transmembrane segments sense the lipid environment. Biochemistry. 46, 1457–1465.

Article  CAS  PubMed  Google Scholar 

Coskun U., Simons K. 2011. Cell membranes: The lipid perspective. Structure. 19 (11), 1543–1548. https://doi.org/10.1016/j.str.2011.10.010

Article  CAS  PubMed  Google Scholar 

Sezgin E., Levental I., Mayor S., Eggeling C. 2017. The mystery of membrane organization: Composition, regulation, and roles of lipid rafts. Nat. Rev. Mol. Cell. Biol. 18, 361–374.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steck T.L., Ali Tabei S.M., Lange Y., 2024. Estimating the cholesterol affinity of integral membrane proteins from experimental data. Biochemistry. 63 (1), 19–26. https://doi.org/10.1021/acs.biochem.3c00567

Article  CAS  PubMed  Google Scholar 

Steck T.L., Lange Y. 2018. Transverse distribution of plasma membrane bilayer cholesterol: Picking sides. Traffic. 19 (10), 750–760. https://doi.org/10.1111/tra.12586

Article  CAS  PubMed  Google Scholar 

Maekawa M., Fairn G.D. 2015. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J. Cell Sci. 128 (7), 1422–1433.

Article  CAS  PubMed  Google Scholar 

Ridsdale A., Denis M., Gougeon P.Y., Ngsee J.K., Presley J.F., Zha X. 2006. Cholesterol is required for efficient endoplasmic reticulum-to-Golgi transport of secretory membrane proteins. Mol. Biol. Cell. 17 (4), 1593–1605. https://doi.org/10.1091/mbc.e05-02-0100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muller M.P., Jiang T., Sun C., Lihan M., Pant S., Mahinthichaichan P., Trifan A., Tajkhorshid E. 2019. Characterization of lipid-protein interactions and lipid-mediated modulation of membrane protein function through molecular simulation. Chem. Rev. 19, 6086–6161. https://doi.org/10.1021/acs.chemrev.8b00608

Article  CAS 

Comments (0)

No login
gif