Bulychev A.A., Niyazova M.M., Rubin A.B. 1987. Fluorescence changes of chloroplasts caused by the shifts of membrane potential and their dependence on the redox state of the acceptor of photosystem II. Biologicheskie Membrany (Rus.). 4, 262–269.
Remiš D., Bulychev A.A., Rubin A.B. 1990. Electro-induced disturbance of barrier properties of envelope membranes in isolated chloroplasts. Biologicheskie Membrany (Rus.). 7, 382–389.
Bulychev A.A., Tsymbalyuk E.S., Lukashev E.P. 1993. Use of irreversible electroporation and osmotic effects as evidence of photoinduced accumulation of methylphenazonium cations in internal volume of thylakoids. Biologicheskie Membrany (Rus.). 10, 587–597 (English translation: Biol. Membr. 1994. 7, 567–578).
Cherkashin A.A., Bulychev A.A., Vredenberg W.J. 2000. The outward component of photoinduced current in chloroplasts of Peperomia metallica. Biologicheskie Membrany (Rus.). 17, 377–386 (English translation: Membr. Cell Biol. 2001. 14, 475–485).
Bulychev A.A., Krupenina N.A. 2008. Facilitated permeation of methyl viologen into chloroplasts in situ during electric pulse generation in excitable plant cell membranes. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 2, 387–394.
Bulychev A.A., Komarova A.V. 2014. Lateral transport of photosynthetically active intermediate at rest and after excitation of Chara cells. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 8, 314–323.
Bulychev A.A., Alova A.V. 2022. Changes in chloroplast fluorescence related to excitability and metabolite transport by cytoplasmic streaming in Chara cells. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 16, 135–143.
Shimmen T. 2007. The sliding theory of cytoplasmic streaming: Fifty years of progress. J. Plant Res. 120, 31–43.
Article CAS PubMed Google Scholar
Bulychev A.A., Cherkashin A.A., Shapiguzov S.Y., Alova A.V. 2021. Effects of chloroplast–cytoplasm exchange and lateral mass transfer on slow induction of chlorophyll fluorescence in Characeae. Physiol. Plant. 173, 1901–1913.
Article CAS PubMed Google Scholar
Foissner I., Wasteneys G.O. 2012. The characean internodal cell as a model system for studying wound healing. J. Microsc. 247, 10–22.
Article CAS PubMed Google Scholar
Beilby M.J., Casanova M.T. 2014. The physiology of characean cells. Berlin–Heidelberg: Springer.
Lucas W.J., Nuccitelli R. 1980. \(}_^\) and OH– transport across the plasmalemma of Chara. Planta. 150, 120–131.
Article CAS PubMed Google Scholar
Bulychev A.A., Polezhaev A.A, Zykov S.V., Pljusnina T.Y., Riznichenko G.Y., Rubin A.B., Jantoß W., Zykov V.S., Müller S.C. 2001. Light-triggered pH banding profile in Chara cells revealed with a scanning pH microprobe and its relation to self-organization phenomena. J. Theor. Biol. 212, 275–294.
Article CAS PubMed Google Scholar
Beilby M.J., Bisson M.A. 2012. PH banding in charophyte algae. In: Plant Electrophysiology. Ed. Volkov A.G. Berlin–Heidelberg: Springer, p. 247–271.
Feijó J.A., Sainhas J., Hackett G.R., Kunkel J.G., Hepler P.K. 1999. Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J. Cell Biol. 144, 483–496.
Article PubMed PubMed Central Google Scholar
Bulychev A.A., Komarova A.V. 2014. Long-distance signal transmission and regulation of photosynthesis in characean cells. Biochemistry (Moscow). 79, 273–281.
Article CAS PubMed Google Scholar
Bulychev A.A., Foissner I. 2020. Inhibition of endosomal trafficking by brefeldin A interferes with long-distance interaction between chloroplasts and plasma membrane transporters. Physiol. Plant. 169, 122–134.
Article CAS PubMed Google Scholar
Bulychev A.A., Kamzolkina N.A., Luengviriya J., Rubin A.B., Müller S.C. 2004. Effect of a single excitation stimulus on photosynthetic activity and light-dependent pH banding in Chara cells. J. Membr. Biol. 202, 11–19.
Article CAS PubMed Google Scholar
Wayne R. 1993. Excitability in plant cells. Am. Sci. 81, 140–151.
Król E., Dziubinska H., Trebacz K. 2010. What do plants need action potentials for? In: Action Potential. Ed. DuBois M.L. New York: Nova Science, p. 1–26.
Hedrich R. 2012. Ion channels in plants. Physiol. Rev. 92, 1777–1811.
Article CAS PubMed Google Scholar
Kisnieriene V., Trȩbacz K., Pupkis V., Koselski M., Lapeikaite I. 2022. Evolution of long-distance signalling upon plant terrestrialization: Comparison of action potentials in Characean algae and liverworts. Ann. Bot. 130, 457–475.
Article CAS PubMed PubMed Central Google Scholar
Lunevsky V.Z., Zherelova O.M., Vostrikov I.Y., Berestovsky G.N. 1983. Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J. Membr. Biol. 72, 43–58.
Biskup B., Gradmann D., Thiel G. 1999. Calcium release from InsP3-sensitive internal stores initiates action potential in Chara. FEBS Lett. 453, 72–76.
Article CAS PubMed Google Scholar
Wacke M., Thiel G., Hütt M.T. 2003. Ca2+ dynamics during membrane excitation of green alga Chara: Model simulations and experimental data. J. Membr. Biol. 191, 179–192.
Article CAS PubMed Google Scholar
Tazawa M., Kikuyama M. 2003. Is Ca2+ release from internal stores involved in membrane excitation in characean cells? Plant Cell Physiol. 44, 518–526.
Article CAS PubMed Google Scholar
Berestovsky G.N., Kataev A.A. 2005. Voltage-gated calcium and Ca2+-activated chloride channels and Ca2+ transients: Voltage-clamp studies of perfused and intact cells of Chara. Eur. Biophys. J. 34, 973–986.
Article CAS PubMed Google Scholar
Huang S., Shen L., Roelfsema R.M.G., Becker D., Hedrich R. 2023. Light-gated channelrhodopsin sparks proton-induced calcium release in guard cells. Science. 382, 1314–1318.
Article CAS PubMed Google Scholar
Krupenina N.A., Bulychev A.A., Roelfsema M.R.G., Schreiber U. 2008. Action potential in Chara cells intensifies spatial patterns of photosynthetic electron flow and non-photochemical quenching in parallel with inhibition of pH banding. Photochem. Photobiol. Sci. 7, 681–688.
Article CAS PubMed Google Scholar
Eremin A., Bulychev A., Krupenina N.A., Mair T., Hauser M.J.B., Stannarius R., Müller S.C., Rubin A.B. 2007. Excitation-induced dynamics of external pH pattern in Chara corallina cells and its dependence on external calcium concentration. Photochem. Photobiol. Sci. 6, 103–109.
Article CAS PubMed Google Scholar
Foissner I., Sommer A., Hoeftberger M. 2015. Photosynthesis-dependent formation of convoluted plasma membrane domains in Chara internodal cells is independent of chloroplast position. Protoplasma. 252, 1085–1096.
Article CAS PubMed Google Scholar
Lino B., Baizabal-Aguirre V.M., De La Vara L.E.G. 1998. The plasma-membrane H+-ATPase from beet root is inhibited by a calcium-dependent phosphorylation. Planta. 204, 352–359.
Article CAS PubMed Google Scholar
De Nisi P., Dell’Orto M., Pirovano L., Zocchi G. 1999. Calcium-dependent phosphorylation regulates the plasma-membrane H+-ATPase activity of maize (Zea mays L.) roots. Planta. 209, 187–194.
Sehnke P.C., DeLille J.M., Ferl R.J. 2002. Consummating signal transduction: The role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell. 14, 339–354.
Smith J.R., Walker N.A. 1985. Effects of pH and light on the membrane conductance measured in the acid and basic zones of Chara. J. Membr. Biol. 83, 193–205.
Bulychev A.A., Krupenina N.A. 2009. Transient removal of alkaline zones after excitation of Chara cells is associated with inactivation of high conductance in the plasmalemma. Plant Signal. Behav. 4, 727–734.
Comments (0)