Role of Membrane H+ Transport and Plasmalemma Excitability in Pattern Formation, Long-Distance Transport and Photosynthesis of Characean Algae

Bulychev A.A., Niyazova M.M., Rubin A.B. 1987. Fluorescence changes of chloroplasts caused by the shifts of membrane potential and their dependence on the redox state of the acceptor of photosystem II. Biologicheskie Membrany (Rus.). 4, 262–269.

CAS  Google Scholar 

Remiš D., Bulychev A.A., Rubin A.B. 1990. Electro-induced disturbance of barrier properties of envelope membranes in isolated chloroplasts. Biologicheskie Membrany (Rus.). 7, 382–389.

Google Scholar 

Bulychev A.A., Tsymbalyuk E.S., Lukashev E.P. 1993. Use of irreversible electroporation and osmotic effects as evidence of photoinduced accumulation of methylphenazonium cations in internal volume of thylakoids. Biologicheskie Membrany (Rus.). 10, 587–597 (English translation: Biol. Membr. 1994. 7, 567–578).

Google Scholar 

Cherkashin A.A., Bulychev A.A., Vredenberg W.J. 2000. The outward component of photoinduced current in chloroplasts of Peperomia metallica. Biologicheskie Membrany (Rus.). 17, 377–386 (English translation: Membr. Cell Biol. 2001. 14, 475–485).

CAS  PubMed  Google Scholar 

Bulychev A.A., Krupenina N.A. 2008. Facilitated permeation of methyl viologen into chloroplasts in situ during electric pulse generation in excitable plant cell membranes. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 2, 387–394.

Google Scholar 

Bulychev A.A., Komarova A.V. 2014. Lateral transport of photosynthetically active intermediate at rest and after excitation of Chara cells. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 8, 314–323.

Google Scholar 

Bulychev A.A., Alova A.V. 2022. Changes in chloroplast fluorescence related to excitability and metabolite transport by cytoplasmic streaming in Chara cells. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 16, 135–143.

CAS  Google Scholar 

Shimmen T. 2007. The sliding theory of cytoplasmic streaming: Fifty years of progress. J. Plant Res. 120, 31–43.

Article  CAS  PubMed  Google Scholar 

Bulychev A.A., Cherkashin A.A., Shapiguzov S.Y., Alova A.V. 2021. Effects of chloroplast–cytoplasm exchange and lateral mass transfer on slow induction of chlorophyll fluorescence in Characeae. Physiol. Plant. 173, 1901–1913.

Article  CAS  PubMed  Google Scholar 

Foissner I., Wasteneys G.O. 2012. The characean internodal cell as a model system for studying wound healing. J. Microsc. 247, 10–22.

Article  CAS  PubMed  Google Scholar 

Beilby M.J., Casanova M.T. 2014. The physiology of characean cells. Berlin–Heidelberg: Springer.

Book  Google Scholar 

Lucas W.J., Nuccitelli R. 1980. \(}_^\) and OH– transport across the plasmalemma of Chara. Planta. 150, 120–131.

Article  CAS  PubMed  Google Scholar 

Bulychev A.A., Polezhaev A.A, Zykov S.V., Pljusnina T.Y., Riznichenko G.Y., Rubin A.B., Jantoß W., Zykov V.S., Müller S.C. 2001. Light-triggered pH banding profile in Chara cells revealed with a scanning pH microprobe and its relation to self-organization phenomena. J. Theor. Biol. 212, 275–294.

Article  CAS  PubMed  Google Scholar 

Beilby M.J., Bisson M.A. 2012. PH banding in charophyte algae. In: Plant Electrophysiology. Ed. Volkov A.G. Berlin–Heidelberg: Springer, p. 247–271.

Google Scholar 

Feijó J.A., Sainhas J., Hackett G.R., Kunkel J.G., Hepler P.K. 1999. Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J. Cell Biol. 144, 483–496.

Article  PubMed  PubMed Central  Google Scholar 

Bulychev A.A., Komarova A.V. 2014. Long-distance signal transmission and regulation of photosynthesis in characean cells. Biochemistry (Moscow). 79, 273–281.

Article  CAS  PubMed  Google Scholar 

Bulychev A.A., Foissner I. 2020. Inhibition of endosomal trafficking by brefeldin A interferes with long-distance interaction between chloroplasts and plasma membrane transporters. Physiol. Plant. 169, 122–134.

Article  CAS  PubMed  Google Scholar 

Bulychev A.A., Kamzolkina N.A., Luengviriya J., Rubin A.B., Müller S.C. 2004. Effect of a single excitation stimulus on photosynthetic activity and light-dependent pH banding in Chara cells. J. Membr. Biol. 202, 11–19.

Article  CAS  PubMed  Google Scholar 

Wayne R. 1993. Excitability in plant cells. Am. Sci. 81, 140–151.

Google Scholar 

Król E., Dziubinska H., Trebacz K. 2010. What do plants need action potentials for? In: Action Potential. Ed. DuBois M.L. New York: Nova Science, p. 1–26.

Hedrich R. 2012. Ion channels in plants. Physiol. Rev. 92, 1777–1811.

Article  CAS  PubMed  Google Scholar 

Kisnieriene V., Trȩbacz K., Pupkis V., Koselski M., Lapeikaite I. 2022. Evolution of long-distance signalling upon plant terrestrialization: Comparison of action potentials in Characean algae and liverworts. Ann. Bot. 130, 457–475.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lunevsky V.Z., Zherelova O.M., Vostrikov I.Y., Berestovsky G.N. 1983. Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J. Membr. Biol. 72, 43–58.

Article  Google Scholar 

Biskup B., Gradmann D., Thiel G. 1999. Calcium release from InsP3-sensitive internal stores initiates action potential in Chara. FEBS Lett. 453, 72–76.

Article  CAS  PubMed  Google Scholar 

Wacke M., Thiel G., Hütt M.T. 2003. Ca2+ dynamics during membrane excitation of green alga Chara: Model simulations and experimental data. J. Membr. Biol. 191, 179–192.

Article  CAS  PubMed  Google Scholar 

Tazawa M., Kikuyama M. 2003. Is Ca2+ release from internal stores involved in membrane excitation in characean cells? Plant Cell Physiol. 44, 518–526.

Article  CAS  PubMed  Google Scholar 

Berestovsky G.N., Kataev A.A. 2005. Voltage-gated calcium and Ca2+-activated chloride channels and Ca2+ transients: Voltage-clamp studies of perfused and intact cells of Chara. Eur. Biophys. J. 34, 973–986.

Article  CAS  PubMed  Google Scholar 

Huang S., Shen L., Roelfsema R.M.G., Becker D., Hedrich R. 2023. Light-gated channelrhodopsin sparks proton-induced calcium release in guard cells. Science. 382, 1314–1318.

Article  CAS  PubMed  Google Scholar 

Krupenina N.A., Bulychev A.A., Roelfsema M.R.G., Schreiber U. 2008. Action potential in Chara cells intensifies spatial patterns of photosynthetic electron flow and non-photochemical quenching in parallel with inhibition of pH banding. Photochem. Photobiol. Sci. 7, 681–688.

Article  CAS  PubMed  Google Scholar 

Eremin A., Bulychev A., Krupenina N.A., Mair T., Hauser M.J.B., Stannarius R., Müller S.C., Rubin A.B. 2007. Excitation-induced dynamics of external pH pattern in Chara corallina cells and its dependence on external calcium concentration. Photochem. Photobiol. Sci. 6, 103–109.

Article  CAS  PubMed  Google Scholar 

Foissner I., Sommer A., Hoeftberger M. 2015. Photosynthesis-dependent formation of convoluted plasma membrane domains in Chara internodal cells is independent of chloroplast position. Protoplasma. 252, 1085–1096.

Article  CAS  PubMed  Google Scholar 

Lino B., Baizabal-Aguirre V.M., De La Vara L.E.G. 1998. The plasma-membrane H+-ATPase from beet root is inhibited by a calcium-dependent phosphorylation. Planta. 204, 352–359.

Article  CAS  PubMed  Google Scholar 

De Nisi P., Dell’Orto M., Pirovano L., Zocchi G. 1999. Calcium-dependent phosphorylation regulates the plasma-membrane H+-ATPase activity of maize (Zea mays L.) roots. Planta. 209, 187–194.

Article  CAS  Google Scholar 

Sehnke P.C., DeLille J.M., Ferl R.J. 2002. Consummating signal transduction: The role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell. 14, 339–354.

Article  Google Scholar 

Smith J.R., Walker N.A. 1985. Effects of pH and light on the membrane conductance measured in the acid and basic zones of Chara. J. Membr. Biol. 83, 193–205.

Article  Google Scholar 

Bulychev A.A., Krupenina N.A. 2009. Transient removal of alkaline zones after excitation of Chara cells is associated with inactivation of high conductance in the plasmalemma. Plant Signal. Behav. 4, 727–734.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif