Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules. 2020;25:5789.
Article CAS PubMed PubMed Central Google Scholar
Fakhoury M. Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol. 2018;16:508–18.
Article CAS PubMed PubMed Central Google Scholar
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2018;217:459–72.
Article CAS PubMed PubMed Central Google Scholar
Matsuoka Y, Picciano M, Malester B, LaFrancois J, Zehr C, Daeschner JM, et al. Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. Am J Pathol. 2001;158:1345–54.
Article CAS PubMed PubMed Central Google Scholar
Ries M, Sastre M. Mechanisms of Aβ clearance and degradation by glial cells. Front Aging Neurosci. 2016. https://doi.org/10.3389/fnagi.2016.00160.
Article PubMed PubMed Central Google Scholar
Solito E, Sastre M. Microglia function in Alzheimer’s disease. Front Pharmacol. 2012. https://doi.org/10.3389/fphar.2012.00014.
Article PubMed PubMed Central Google Scholar
Lee CYD, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transm. 2010;117:949–60.
Article CAS PubMed Google Scholar
Rodríguez JJ, Olabarria M, Chvatal A, Verkhratsky A. Astroglia in dementia and Alzheimer’s disease. Cell Death Differ. 2009;16:378–85.
Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. Therapies for prevention and treatment of Alzheimer’s disease. Biomed Res Int. 2016;2016:1–17.
Vaz M, Silvestre S. Alzheimer’s disease: recent treatment strategies. Eur J Pharmacol. 2020;887:173554.
Article CAS PubMed Google Scholar
Sanders LMJ, Hortobágyi T, la Bastide-van GS, van der Zee EA, van Heuvelen MJG. Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: a systematic review and meta-analysis. PLoS ONE. 2019;14:e0210036.
Article CAS PubMed PubMed Central Google Scholar
Jahangiri Z, Gholamnezhad Z, Hosseini M. Neuroprotective effects of exercise in rodent models of memory deficit and Alzheimer’s. Metab Brain Dis. 2019;34:21–37.
Article CAS PubMed Google Scholar
De la Rosa A, Olaso-Gonzalez G, Arc-Chagnaud C, Millan F, Salvador-Pascual A, García-Lucerga C, et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. J Sport Heal Sci. 2020;9:394–404.
Rodríguez-Giraldo M, González-Reyes RE, Ramírez-Guerrero S, Bonilla-Trilleras CE, Guardo-Maya S, Nava-Mesa MO. Astrocytes as a therapeutic target in alzheimer’s disease–comprehensive review and recent developments. Int J Mol Sci. 2022;23:13630.
Article PubMed PubMed Central Google Scholar
Runge M, Rehfeld G, Resnicek E. Balance training and exercise in geriatric patients. J Musculoskelet Neuronal Interact. 2000;1:61–5.
Zhang L, Weng C, Liu M, Wang Q, Liu L, He Y. Effect of whole-body vibration exercise on mobility, balance ability and general health status in frail elderly patients: a pilot randomized controlled trial. Clin Rehabil. 2014;28:59–68.
Article CAS PubMed Google Scholar
Mettlach G, Polo-Parada L, Peca L, Rubin CT, Plattner F, Bibb JA. Enhancement of neuromuscular dynamics and strength behavior using extremely low magnitude mechanical signals in mice. J Biomech. 2014;47:162–7.
Patel VS, Chan ME, Pagnotti GM, Frechette DM, Rubin J, Rubin CT. Incorporating refractory period in mechanical stimulation mitigates obesity-induced adipose tissue dysfunction in adult mice. Obesity. 2017;25:1745–53.
Article CAS PubMed Google Scholar
Corbiere T, Weinheimer-Haus E, Judex S, Koh T. Low-intensity vibration improves muscle healing in a mouse model of laceration injury. J Funct Morphol Kinesiol. 2017;3:1.
Cariati I, Bonanni R, Pallone G, Annino G, Tancredi V, D’Arcangelo G. Modulation of synaptic plasticity by vibratory training in young and old mice. Brain Sci. 2021;11:82.
Article CAS PubMed PubMed Central Google Scholar
Peng G, Yang L, Wu CY, Zhang LL, Wu CY, Li F, et al. Whole body vibration training improves depression-like behaviors in a rat chronic restraint stress model. Neurochem Int. 2021;142:104926.
Article CAS PubMed Google Scholar
Oroszi T, Geerts E, de Boer SF, Schoemaker RG, van der Zee EA, Nyakas C. Whole body vibration improves spatial memory, anxiety-like behavior, and motor performance in aged male and female rats. Front Aging Neurosci. 2022. https://doi.org/10.3389/fnagi.2021.801828.
Article PubMed PubMed Central Google Scholar
Oroszi T, de Boer SF, Nyakas C, Schoemaker RG, van der Zee EA. Chronic whole body vibration ameliorates hippocampal neuroinflammation, anxiety-like behavior, memory functions and motor performance in aged male rats dose dependently. Sci Rep. 2022;12:9020.
Article CAS PubMed PubMed Central Google Scholar
Huang D, Yang Z, Wang Z, Wang P, Qu Y. The macroscopic and microscopic effect of low-frequency whole-body vibration after cerebral ischemia in rats. Metab Brain Dis. 2018;33:15–25.
Raval A, Schatz M, Bhattacharya P, d’Adesky N, Rundek T, Dietrich W, et al. Whole body vibration therapy after ischemia reduces brain damage in reproductively senescent female rats. Int J Mol Sci. 2018;19:2749.
Article PubMed PubMed Central Google Scholar
Monteiro F, Sotiropoulos I, Carvalho Ó, Sousa N, Silva FS. Multi-mechanical waves against Alzheimer’s disease pathology: a systematic review. Transl Neurodegener. 2021;10:36.
Article PubMed PubMed Central Google Scholar
Mucke L, Masliah E, Yu G-Q, Mallory M, Rockenstein EM, Tatsuno G, et al. High-level neuronal expression of Aβ 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci. 2000;20:4050–8.
Article CAS PubMed PubMed Central Google Scholar
Harris JA, Devidze N, Halabisky B, Lo I, Thwin MT, Yu G-Q, et al. Many neuronal and behavioral impairments in transgenic mouse models of Alzheimer’s disease are independent of caspase cleavage of the amyloid precursor protein. J Neurosci. 2010;30:372–81.
Article CAS PubMed PubMed Central Google Scholar
Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, et al. ABAD Directly links Aß to mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304:448–52.
Article CAS PubMed Google Scholar
Cheng IH, Scearce-Levie K, Legleiter J, Palop JJ, Gerstein H, Bien-Ly N, et al. Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J Biol Chem. 2007;282:23818–28.
Article CAS PubMed Google Scholar
Lalonde R, Kim HD, Fukuchi K. Exploratory activity, anxiety, and motor coordination in bigenic APPswe + PS1/ΔE9 mice. Neurosci Lett. 2004;369:156–61.
Article CAS PubMed Google Scholar
Wright AL, Zinn R, Hohensinn B, Konen LM, Beynon SB, Tan RP, et al. Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PLoS ONE. 2013;8:e59586.
Article CAS PubMed PubMed Central Google Scholar
van Heuvelen MJG, Rittweger J, Judex S, Sañudo B, Seixas A, Fuermaier ABM, et al. Reporting guidelines for whole-body vibration studies in humans, animals and cell cultures: a consensus statement from an international group of experts. Biology. 2021;10:965.
Article PubMed PubMed Central Google Scholar
Keijser JN, Marieke JG, van Heuvelen MJG, Nyakas C, Toth K, Schoemaker RG, et al. Whole body vibration improves attention and motor performance in mice depending on the duration of the whole body vibration session. African J Tradit Complement Altern Med. 2017;14:128–34.
Boerema AS, Heesterbeek M, Boersma SA, Schoemaker R, de Vries EFJ, van Heuvelen MJG, et al. Beneficial effects of whole body vibration on brain functions in mice and humans. Dose Response. 2018;16:155932581881175.
Hovens I, Nyakas C, Schoemaker R. A novel method for evaluating microglial activation using ionized calcium-binding adaptor protein-1 staining: cell body to cell size ratio. Neuroimmunol Neuroinflamm. 2014;1:82.
Comments (0)