Browning, J.D. and Horton, J.D. (2004) Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest., 114, 147–152.
Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M. and Sanyal, A.J. (2018) Mechanisms of NAFLD development and therapeutic strategies. Nat. Med., 24, 908–922.
Birkenfeld, A.L. and Shulman, G.I. (2014) Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology, 59, 713–723.
Marra, F., Gastaldelli, A., Svegliati Baroni, G., Tell, G. and Tiribelli, C. (2008) Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol. Med., 14, 72–81.
Kotronen, A. and Yki-Jarvinen, H. (2008) Fatty liver: a novel component of the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol., 28, 27–38.
Rinella, M.E. (2015) Nonalcoholic fatty liver disease: a systematic review. JAMA, 313, 2263–2273.
Sunagawa, Y., Hirano, S., Katanasaka, Y., Miyazaki, Y., Funamoto, M., Okamura, N., Hojo, Y., Suzuki, H., Doi, O., Yokoji, T., Morimoto, E., Takahashi, T., Ozawa, H., Imaizumi, A., Ueno, M., Kakeya, H., Shimatsu, A., Wada, H., Hasegawa, K. and Morimoto, T. (2015) Colloidal submicron-particle curcumin exhibits high absorption efficiency-a double-blind, 3-way crossover study. J. Nutr. Sci. Vitaminol., 61, 37–44.
Ohno, M., Nishida, A., Sugitani, Y., Nishino, K., Inatomi, O., Sugimoto, M., Kawahara, M. and Andoh, A. (2017) Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS ONE, 12, e0185999.
Farzaei, M.H., Zobeiri, M., Parvizi, F., El-Senduny, F.F., Marmouzi, I., Coy-Barrera, E., Naseri, R., Nabavi, S.M., Rahimi, R. and Abdollahi, M. (2018) Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients, 10, E855.
Maria, M., Eleni, P., George, V., Eftychia, T. and Constantinos, G. (2018) Effects of curcumin consumption on human chronic diseases: A narrative review of the most recent clinical data. Phytother. Res., 32, 957–975.
Imaizumi, A. (2015) Highly bioavailable curcumin (Theracurmin): its development and clinical application. Pharma-Nutrition, 3, 123–130.
Ding, L., Li, J., Song, B., Xiao, X., Zhang, B., Qi, M., Huang, W., Yang, L. and Wang, Z. (2016) Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicol. Appl. Pharmacol., 304, 99–109.
Shao, W., Yu, Z., Chiang, Y., Yang, Y., Chai, T., Foltz, W., Lu, H., Fantus, I.G. and Jin, T. (2012) Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS ONE, 7, e28784.
Sasaki, H., Sunagawa, Y., Takahashi, K., Imaizumi, A., Fukuda, H., Hashimoto, T., Wada, H., Katanasaka, Y., Kakeya, H., Fujita, M., Hasegawa, K. and Morimoto, T. (2011) Innovative preparation of curcumin for improved oral bioavailability. Biol. Pharm. Bull., 34, 660–665.
Cuomo, J., Appendino, G., Dern, A.S., Schneider, E., McKinnon, T.P., Brown, M.J., Togni, S. and Dixon, B.M. (2011) Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J. Nat. Prod., 74, 664–669.
Gota, V.S., Maru, G.B., Soni, T.G., Gandhi, T.R., Kochar, N. and Agarwal, M.G. (2010) Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J. Agric. Food Chem., 58, 2095–2099.
Sunagawa, Y., Wada, H., Suzuki, H., Sasaki, H., Imaizumi, A., Fukuda, H., Hashimoto, T., Katanasaka, Y., Shimatsu, A., Kimura, T., Kakeya, H., Fujita, M., Hasegawa, K. and Morimoto, T. (2012) A novel drug delivery system of oral curcumin markedly improves efficacy of treatment for heart failure after myocardial infarction in rats. Biol. Pharm. Bull., 35, 139–144.
Cichoz-Lach, H. and Michalak, A. (2014) Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol., 20, 8082–8091.
Oner-Iyidogan, Y., Kocak, H., Seyidhanoglu, M., Gurdol, F., Gulcubuk, A., Yildirim, F., Cevik, A. and Uysal, M. (2013) Curcumin prevents liver fat accumulation and serum fetuin-A increase in rats fed a high-fat diet. J. Physiol. Biochem., 69, 677–686.
Liu, Y., Cheng, F., Luo, Y., Zhan, Z., Hu, P., Ren, H., Tang, H. and Peng, M. (2017) PEGylated curcumin derivative attenuates hepatic steatosis via CREB/PPAR-gamma/CD36 pathway. BioMed Res. Int., 2017, 8234507.
PubMed PubMed Central Google Scholar
Greenberg, A.S., Coleman, R.A., Kraemer, F.B., McManaman, J.L., Obin, M.S., Puri, V., Yan, Q.W., Miyoshi, H. and Mashek, D.G. (2011) The role of lipid droplets in metabolic disease in rodents and humans. J. Clin. Invest., 121, 2102–2110.
Ioannou, G.N. (2016) The role of cholesterol in the pathogenesis of NASH. Trends Endocrinol. Metab., 27, 84–95.
Walenbergh, S.M. and Shiri-Sverdlov, R. (2015) Cholesterol is a significant risk factor for non-alcoholic steatohepatitis. Expert Rev. Gastroenterol. Hepatol., 9, 1343–1346.
Shimano, H. and Sato, R. (2017) SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat. Rev. Endocrinol., 13, 710–730.
Yang, J.W., Kim, H.S., Im, J.H., Kim, J.W., Jun, D.W., Lim, S.C., Lee, K., Choi, J.M., Kim, S.K. and Kang, K.W. (2016) GPR119: a promising target for nonalcoholic fatty liver disease. FASEB J., 30, 324–335.
Moore, K.J., Rayner, K.J., Suarez, Y. and Fernandez-Hernando, C. (2011) The role of microRNAs in cholesterol efflux and hepatic lipid metabolism. Annu. Rev. Nutr., 31, 49–63.
Tariq, Z., Green, C.J. and Hodson, L. (2014) Are oxidative stress mechanisms the common denominator in the progression from hepatic steatosis towards non-alcoholic steatohepatitis (NASH)?. Liver Int., 34, e180–e190.
Rolo, A.P., Teodoro, J.S. and Palmeira, C.M. (2012) Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic. Biol. Med., 52, 59–69.
Spahis, S., Delvin, E., Borys, J.M. and Levy, E. (2017) oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis. Antioxid. Redox Signal., 26, 519–541.
Negre-Salvayre, A., Auge, N., Ayala, V., Basaga, H., Boada, J., Brenke, R., Chapple, S., Cohen, G., Feher, J., Grune, T., Lengyel, G., Mann, G.E., Pamplona, R., Poli, G., Portero-Otin, M., Riahi, Y., Salvayre, R., Sasson, S., Serrano, J., Shamni, O., Siems, W., Siow, R.C.M., Wiswedel, I., Zarkovic, K. and Zarkovic, N. (2010) Pathological aspects of lipid peroxidation. Free Radic. Res., 44, 1125–1171.
Wei, Q.Y., Chen, W.F., Zhou, B., Yang, L. and Liu, Z.L. (2006) Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochim. Biophys. Acta, 1760, 70–77.
Scapagnini, G., Vasto, S., Abraham, N.G., Caruso, C., Zella, D. and Fabio, G. (2011) Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol. Neurobiol., 44, 192–201.
Yang, C., Zhang, X., Fan, H. and Liu, Y. (2009) Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res., 1282, 133–141.
He, H.-J., Wang, G.-Y., Gao, Y., Ling, W.-H., Yu, Z.-W. and Jin, T.-R. (2012) Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J. Diabetes, 3, 94.
Comments (0)