Nguyen P, Leray V, Diez M, Serisier S, Le Bloc’h J, Siliart B, Dumon H (2008) Liver lipid metabolism. J Anim Physiol Anim Nutr (Berl) 92:272–283. https://doi.org/10.1111/j.1439-0396.2007.00752.x
Article CAS PubMed Google Scholar
Almazroo OA, Miah MK, Venkataramanan R (2017) Drug metabolism in the liver. Clin Liver Dis 21:1–20. https://doi.org/10.1016/j.cld.2016.08.001
Petersen MC, Vatner DF, Shulman GI (2017) Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol 13:572–587. https://doi.org/10.1038/nrendo.2017.80
Article CAS PubMed PubMed Central Google Scholar
Trefts E, Gannon M, Wasserman DH (2017) The liver. Curr Biol 27:R1147–R1151. https://doi.org/10.1016/j.cub.2017.09.019
Article CAS PubMed PubMed Central Google Scholar
Onakpoya IJ, Heneghan CJ, Aronson JK (2016) Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med 14:10. https://doi.org/10.1186/s12916-016-0553-2
Article PubMed PubMed Central Google Scholar
Watkins PB (2011) Drug safety sciences and the bottleneck in drug development. Clin Pharmacol Ther 89:788–790. https://doi.org/10.1038/clpt.2011.63
Article CAS PubMed Google Scholar
Wu Y, Xiao W, Tong W, Borlak J, Chen M (2022) A systematic comparison of hepatobiliary adverse drug reactions in FDA and EMA drug labeling reveals discrepancies. Drug Discov Today 27:337–346. https://doi.org/10.1016/j.drudis.2021.09.009
Article CAS PubMed Google Scholar
Russmann S, Kullak-Ublick GA, Grattagliano I (2009) Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem 16:3041–3053. https://doi.org/10.2174/092986709788803097
Article CAS PubMed PubMed Central Google Scholar
Fernandez J, Bassegoda O, Toapanta D, Bernal W (2024) Acute liver failure: a practical update. JHEP Rep 6:101131. https://doi.org/10.1016/j.jhepr.2024.101131
Article PubMed PubMed Central Google Scholar
Lee WM (2008) Etiologies of acute liver failure. Semin Liver Dis 28:142–152. https://doi.org/10.1055/s-2008-1073114
Naritomi Y, Terashita S, Kagayama A, Sugiyama Y (2003) Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos 31:580–588. https://doi.org/10.1124/dmd.31.5.580
Article CAS PubMed Google Scholar
Kuzawa CW, Chugani HT, Grossman LI, Lipovich L, Muzik O, Hof PR, Wildman DE, Sherwood CC, Leonard WR, Lange N (2014) Metabolic costs and evolutionary implications of human brain development. Proc Natl Acad Sci USA 111:13010–13015. https://doi.org/10.1073/pnas.1323099111
Article CAS PubMed PubMed Central Google Scholar
Sanoh S, Horiguchi A, Sugihara K, Kotake Y, Tayama Y, Uramaru N, Ohshita H, Tateno C, Horie T, Kitamura S, Ohta S (2012) Predictability of metabolism of ibuprofen and naproxen using chimeric mice with human hepatocytes. Drug Metab Dispos 40:2267–2272. https://doi.org/10.1124/dmd.112.047555
Article CAS PubMed Google Scholar
Inoue T, Nitta K, Sugihara K, Horie T, Kitamura S, Ohta S (2008) CYP2C9-catalyzed metabolism of S-warfarin to 7-hydroxywarfarin in vivo and in vitro in chimeric mice with humanized liver. Drug Metab Dispos 36:2429–2433. https://doi.org/10.1124/dmd.108.022830
Article CAS PubMed Google Scholar
Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14:1–18. https://doi.org/10.1097/00008571-200401000-00001
Article CAS PubMed Google Scholar
Yang K, Woodhead JL, Watkins PB, Howell BA, Brouwer KL (2014) Systems pharmacology modeling predicts delayed presentation and species differences in bile acid-mediated troglitazone hepatotoxicity. Clin Pharmacol Ther 96:589–598. https://doi.org/10.1038/clpt.2014.158
Article CAS PubMed Google Scholar
Leslie EM, Watkins PB, Kim RB, Brouwer KL (2007) Differential inhibition of rat and human Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1)by bosentan: a mechanism for species differences in hepatotoxicity. J Pharmacol Exp Ther 321:1170–1178. https://doi.org/10.1124/jpet.106.119073
Article CAS PubMed Google Scholar
Gerets HH, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, Atienzar FA (2012) Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol 28:69–87. https://doi.org/10.1007/s10565-011-9208-4
Article CAS PubMed PubMed Central Google Scholar
Jin M, Yi X, Liao W, Chen Q, Yang W, Li Y, Li S, Gao Y, Peng Q, Zhou S (2021) Advancements in stem cell-derived hepatocyte-like cell models for hepatotoxicity testing. Stem Cell Res Ther 12:84. https://doi.org/10.1186/s13287-021-02152-9
Article PubMed PubMed Central Google Scholar
Gomez-Lechon MJ, Donato MT, Castell JV, Jover R (2004) Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr Drug Metab 5:443–462. https://doi.org/10.2174/1389200043335414
Article CAS PubMed Google Scholar
Gomez-Lechon MJ, Tolosa L, Conde I, Donato MT (2014) Competency of different cell models to predict human hepatotoxic drugs. Expert Opin Drug Metab Toxicol 10:1553–1568. https://doi.org/10.1517/17425255.2014.967680
Article CAS PubMed Google Scholar
Knobeloch D, Ehnert S, Schyschka L, Buchler P, Schoenberg M, Kleeff J, Thasler WE, Nussler NC, Godoy P, Hengstler J, Nussler AK (2012) Human hepatocytes: isolation, culture, and quality procedures. Methods Mol Biol 806:99–120. https://doi.org/10.1007/978-1-61779-367-7_8
Article CAS PubMed Google Scholar
Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, Huai C, Shen L, Zhang N, He L, Qin S (2021) Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci. https://doi.org/10.3390/ijms222312808
Article PubMed PubMed Central Google Scholar
Jaeschke H, Ramachandran A (2024) Acetaminophen hepatotoxicity: paradigm for understanding mechanisms of drug-induced liver injury. Annu Rev Pathol 19:453–478. https://doi.org/10.1146/annurev-pathmechdis-051122-094016
Article CAS PubMed PubMed Central Google Scholar
Bhogal RH, Hodson J, Bartlett DC, Weston CJ, Curbishley SM, Haughton E, Williams KT, Reynolds GM, Newsome PN, Adams DH, Afford SC (2011) Isolation of primary human hepatocytes from normal and diseased liver tissue: a one hundred liver experience. PLoS One 6:e18222. https://doi.org/10.1371/journal.pone.0018222
Article CAS PubMed PubMed Central Google Scholar
Nakamura S, Salahuddin SZ, Biberfeld P, Ensoli B, Markham PD, Wong-Staal F, Gallo RC (1988) Kaposi’s sarcoma cells: long-term culture with growth factor from retrovirus-infected CD4+ T cells. Science 242:426–430. https://doi.org/10.1126/science.3262925
Article CAS PubMed Google Scholar
Koide N, Sakaguchi K, Koide Y, Asano K, Kawaguchi M, Matsushima H, Takenami T, Shinji T, Mori M, Tsuji T (1990) Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments. Exp Cell Res 186:227–235. https://doi.org/10.1016/0014-4827(90)90300-y
Comments (0)