Toxicity assessment using neural organoids: innovative approaches and challenges

Parasuraman S (2011) Toxicological screening. J Pharmacol Pharmacother 2:74. https://doi.org/10.4103/0976-500X.81895

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan P, Wang Y, Xu M, Han X, Liu Y (2022) The application of brain organoids in assessing neural toxicity. Front Mol Neurosci 15:799397. https://doi.org/10.3389/fnmol.2022.799397

Article  PubMed  PubMed Central  Google Scholar 

Cannon JR, Greenamyre JT (2011) The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 124:225–250. https://doi.org/10.1093/toxsci/kfr239

Article  CAS  PubMed  PubMed Central  Google Scholar 

OECD (2023) Initial Recommendations on Evaluation of Data from the Developmental Neurotoxicity (DNT) In-Vitro Testing Battery. OECD Series on Testing and Assessment, Paris. https://doi.org/10.1787/91964ef3-en

Book  Google Scholar 

Frank CL, Brown JP, Wallace K, Mundy WR, Shafer TJ (2017) From the cover: developmental neurotoxicants disrupt activity in cortical networks on microelectrode arrays: results of screening 86 compounds during neural network formation. Toxicol Sci 160:121–135. https://doi.org/10.1093/toxsci/kfx169

Article  CAS  PubMed  Google Scholar 

Harrill JA, Freudenrich T, Wallace K, Ball K, Shafer TJ, Mundy WR (2018) Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment. Toxicol Appl Pharmacol 354:24–39. https://doi.org/10.1016/j.taap.2018.04.001

Article  CAS  PubMed  Google Scholar 

Masjosthusmann S, Blum J, Bartmann K, Dolde X, Holzer AK, Stürzl LC, Keßel EH, Förster N, Dönmez A, Klose J (2020) Establishment of an a priori protocol for the implementation and interpretation of an in-vitro testing battery for the assessment of developmental neurotoxicity. EFSA Support Publ 17:1938E. https://doi.org/10.2903/sp.efsa.2020.EN-1938

Article  Google Scholar 

Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D (2023) The importance of animal models in biomedical research: current insights and applications. Animals 13:1223. https://doi.org/10.3390/ani13071223

Article  PubMed  PubMed Central  Google Scholar 

Chen HI, Song H, Gl M (2019) Applications of human brain organoids to clinical problems. Dev Dyn 248:53–64. https://doi.org/10.1002/dvdy.24662

Article  PubMed  Google Scholar 

Ahn S-J (2024) Standards for organoids. Int J Stem Cells 17:99. https://doi.org/10.15283/ijsc24043

Article  PubMed  PubMed Central  Google Scholar 

Hoang DM, Pham PT, Bach TQ, Ngo AT, Nguyen QT, Phan TT, Nguyen GH, Le PT, Hoang VT, Forsyth NR (2022) Stem cell-based therapy for human diseases. Signal Transduct Target Ther 7:1–41. https://doi.org/10.1038/s41392-022-01134-4

Article  Google Scholar 

Kim J, Koo B-K, Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21:571–584. https://doi.org/10.1038/s41580-020-0259-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. https://doi.org/10.1016/j.cell.2007.11.019

Article  CAS  PubMed  Google Scholar 

Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. https://doi.org/10.1126/science.1151526

Article  CAS  PubMed  Google Scholar 

Kwak T, Park S-H, Lee S, Shin Y, Yoon K-J, Cho S-W, Park J-C, Yang S-H, Cho H, Im H-I (2024) Guidelines for manufacturing and application of organoids: brain. Int J Stem Cells 17:158. https://doi.org/10.15283/ijsc24056

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qian X, Song H, Ming G-l (2019) Brain organoids: advances, applications and challenges. Development 146:dev166074. https://doi.org/10.1242/dev.166074

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379. https://doi.org/10.1038/nature12517

Article  CAS  PubMed  Google Scholar 

Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Min Yang S, Berger DR, Maria N, Scholvin J, Goldman M, Kinney JP (2017) Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545:48–53. https://doi.org/10.1038/nature22047

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, Kim CH, Park J-Y, O’rourke NA, Nguyen KD (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 12:671–678. https://doi.org/10.1038/nmeth.3415

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, Zhong C (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254. https://doi.org/10.1016/j.cell.2016.04.032

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sloan SA, Andersen J, Pașca AM, Birey F, Pașca SP (2018) Generation and assembly of human brain region–specific three-dimensional cultures. Nat Protoc 13:2062–2085. https://doi.org/10.1038/s41596-018-0032-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiang Y, Yoshiaki T, Patterson B, Cakir B, Kim KY, Cho YS, Park IH (2018) Generation and fusion of human cortical and medial ganglionic eminence brain organoids. Curr Protoc Stem Cell Biol 47:e61. https://doi.org/10.1002/cpsc.61

Article  PubMed  PubMed Central  Google Scholar 

Rosebrock D, Arora S, Mutukula N, Volkman R, Gralinska E, Balaskas A, Aragonés Hernández A, Buschow R, Brändl B, Müller F-J (2022) Enhanced cortical neural stem cell identity through short SMAD and WNT inhibition in human cerebral organoids facilitates emergence of outer radial glial cells. Nat Cell Biol 24:981–995. https://doi.org/10.1038/s41556-022-00929-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kudoh T, Wilson SW, Dawid IB (2002) Distinct roles for Fgf. Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129:4335–4346. https://doi.org/10.1242/dev.129.18.4335

Article  Google Scholar 

Chiaradia I, Lancaster MA (2020) Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat Neurosci 23:1496–1508. https://doi.org/10.1038/s41593-020-00730-3

Article  CAS  PubMed  Google Scholar 

Bosone C, Castaldi D, Burkard TR, Guzman SJ, Wyatt T, Cheroni C, Caporale N, Bajaj S, Bagley JA, Li C (2024) A polarized FGF8 source specifies frontotemporal signatures in spatially oriented cell populations of cortical assembloids. Nat Methods 21:2147–2159. https://doi.org/10.1038/s41592-024-02412-5

Article  PubMed  PubMed Central  Google Scholar 

Scuderi S, Kang T-Y, Jourdon A, Yang L, Wu F, Nelson A, Anderson GM, Mariani J, Sarangi V, Abyzov A (2024) Specification of human regional brain lineages using orthogonal gradients of WNT and SHH in organoids. bioRxiv 2024.05.18.594828. https://doi.org/10.1101/2024.05.18.594828

Gouti M, Tsakiridis A, Wymeersch FJ, Huang Y, Kleinjung J, Wilson V, Briscoe J (2014) In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol 12:e1001937. https://doi.org/10.1371/journal.pbio.1001937

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif