Parasuraman S (2011) Toxicological screening. J Pharmacol Pharmacother 2:74. https://doi.org/10.4103/0976-500X.81895
Article CAS PubMed PubMed Central Google Scholar
Fan P, Wang Y, Xu M, Han X, Liu Y (2022) The application of brain organoids in assessing neural toxicity. Front Mol Neurosci 15:799397. https://doi.org/10.3389/fnmol.2022.799397
Article PubMed PubMed Central Google Scholar
Cannon JR, Greenamyre JT (2011) The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 124:225–250. https://doi.org/10.1093/toxsci/kfr239
Article CAS PubMed PubMed Central Google Scholar
OECD (2023) Initial Recommendations on Evaluation of Data from the Developmental Neurotoxicity (DNT) In-Vitro Testing Battery. OECD Series on Testing and Assessment, Paris. https://doi.org/10.1787/91964ef3-en
Frank CL, Brown JP, Wallace K, Mundy WR, Shafer TJ (2017) From the cover: developmental neurotoxicants disrupt activity in cortical networks on microelectrode arrays: results of screening 86 compounds during neural network formation. Toxicol Sci 160:121–135. https://doi.org/10.1093/toxsci/kfx169
Article CAS PubMed Google Scholar
Harrill JA, Freudenrich T, Wallace K, Ball K, Shafer TJ, Mundy WR (2018) Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment. Toxicol Appl Pharmacol 354:24–39. https://doi.org/10.1016/j.taap.2018.04.001
Article CAS PubMed Google Scholar
Masjosthusmann S, Blum J, Bartmann K, Dolde X, Holzer AK, Stürzl LC, Keßel EH, Förster N, Dönmez A, Klose J (2020) Establishment of an a priori protocol for the implementation and interpretation of an in-vitro testing battery for the assessment of developmental neurotoxicity. EFSA Support Publ 17:1938E. https://doi.org/10.2903/sp.efsa.2020.EN-1938
Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D (2023) The importance of animal models in biomedical research: current insights and applications. Animals 13:1223. https://doi.org/10.3390/ani13071223
Article PubMed PubMed Central Google Scholar
Chen HI, Song H, Gl M (2019) Applications of human brain organoids to clinical problems. Dev Dyn 248:53–64. https://doi.org/10.1002/dvdy.24662
Ahn S-J (2024) Standards for organoids. Int J Stem Cells 17:99. https://doi.org/10.15283/ijsc24043
Article PubMed PubMed Central Google Scholar
Hoang DM, Pham PT, Bach TQ, Ngo AT, Nguyen QT, Phan TT, Nguyen GH, Le PT, Hoang VT, Forsyth NR (2022) Stem cell-based therapy for human diseases. Signal Transduct Target Ther 7:1–41. https://doi.org/10.1038/s41392-022-01134-4
Kim J, Koo B-K, Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21:571–584. https://doi.org/10.1038/s41580-020-0259-3
Article CAS PubMed PubMed Central Google Scholar
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. https://doi.org/10.1016/j.cell.2007.11.019
Article CAS PubMed Google Scholar
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. https://doi.org/10.1126/science.1151526
Article CAS PubMed Google Scholar
Kwak T, Park S-H, Lee S, Shin Y, Yoon K-J, Cho S-W, Park J-C, Yang S-H, Cho H, Im H-I (2024) Guidelines for manufacturing and application of organoids: brain. Int J Stem Cells 17:158. https://doi.org/10.15283/ijsc24056
Article CAS PubMed PubMed Central Google Scholar
Qian X, Song H, Ming G-l (2019) Brain organoids: advances, applications and challenges. Development 146:dev166074. https://doi.org/10.1242/dev.166074
Article CAS PubMed PubMed Central Google Scholar
Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379. https://doi.org/10.1038/nature12517
Article CAS PubMed Google Scholar
Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Min Yang S, Berger DR, Maria N, Scholvin J, Goldman M, Kinney JP (2017) Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545:48–53. https://doi.org/10.1038/nature22047
Article CAS PubMed PubMed Central Google Scholar
Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, Kim CH, Park J-Y, O’rourke NA, Nguyen KD (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 12:671–678. https://doi.org/10.1038/nmeth.3415
Article CAS PubMed PubMed Central Google Scholar
Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, Zhong C (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254. https://doi.org/10.1016/j.cell.2016.04.032
Article CAS PubMed PubMed Central Google Scholar
Sloan SA, Andersen J, Pașca AM, Birey F, Pașca SP (2018) Generation and assembly of human brain region–specific three-dimensional cultures. Nat Protoc 13:2062–2085. https://doi.org/10.1038/s41596-018-0032-7
Article CAS PubMed PubMed Central Google Scholar
Xiang Y, Yoshiaki T, Patterson B, Cakir B, Kim KY, Cho YS, Park IH (2018) Generation and fusion of human cortical and medial ganglionic eminence brain organoids. Curr Protoc Stem Cell Biol 47:e61. https://doi.org/10.1002/cpsc.61
Article PubMed PubMed Central Google Scholar
Rosebrock D, Arora S, Mutukula N, Volkman R, Gralinska E, Balaskas A, Aragonés Hernández A, Buschow R, Brändl B, Müller F-J (2022) Enhanced cortical neural stem cell identity through short SMAD and WNT inhibition in human cerebral organoids facilitates emergence of outer radial glial cells. Nat Cell Biol 24:981–995. https://doi.org/10.1038/s41556-022-00929-5
Article CAS PubMed PubMed Central Google Scholar
Kudoh T, Wilson SW, Dawid IB (2002) Distinct roles for Fgf. Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129:4335–4346. https://doi.org/10.1242/dev.129.18.4335
Chiaradia I, Lancaster MA (2020) Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat Neurosci 23:1496–1508. https://doi.org/10.1038/s41593-020-00730-3
Article CAS PubMed Google Scholar
Bosone C, Castaldi D, Burkard TR, Guzman SJ, Wyatt T, Cheroni C, Caporale N, Bajaj S, Bagley JA, Li C (2024) A polarized FGF8 source specifies frontotemporal signatures in spatially oriented cell populations of cortical assembloids. Nat Methods 21:2147–2159. https://doi.org/10.1038/s41592-024-02412-5
Article PubMed PubMed Central Google Scholar
Scuderi S, Kang T-Y, Jourdon A, Yang L, Wu F, Nelson A, Anderson GM, Mariani J, Sarangi V, Abyzov A (2024) Specification of human regional brain lineages using orthogonal gradients of WNT and SHH in organoids. bioRxiv 2024.05.18.594828. https://doi.org/10.1101/2024.05.18.594828
Gouti M, Tsakiridis A, Wymeersch FJ, Huang Y, Kleinjung J, Wilson V, Briscoe J (2014) In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol 12:e1001937. https://doi.org/10.1371/journal.pbio.1001937
Comments (0)