Abnormalities of hemostasis in sickle cell patients and predisposition to thrombotic risk: a systematic review and meta-analysis

Tuono DMR, Louokdom JS, Pieme CA, Claude B, Prosper C, Biapa C, et al. Homozygote drepanocytosis: ferric status and inflammation in the world and Africa : review Article and meta analysis. Health Sci Rep. 2023;6:e1609. https://doi.org/10.1002/hsr2.1609.

Article  Google Scholar 

Nasimuzzaman M, Malik P. Role of the coagulation system in the pathogenesis of sickle cell disease. Blood Adv. 2019;3:3170–80.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sparkenbaugh EM, Henderson MW, Miller-Awe M, Abrams C, Ilich A, Trebak F, et al. Factor XII contributes to thrombotic complications and vaso-occlusion in sickle cell disease. Blood. 2023;141:1871–83.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bhagat S, Thakur AS. Influence of β-globin haplotypes on oxidative stress, antioxidant capacity and inflammation in sickle cell patients of Chhattisgarh. Indian J Clin Biochem [Internet]. Springer India; 2019;34:201–6. Available from: https://doi.org/10.1007/s12291-017-0729-3

Meher S, Mohanty PK, Patel S, Das K, Sahoo S, Dehury S, et al. Haptoglobin genotypes associated with vaso-occlusive crisis in sickle cell anemia patients of Eastern India. Volume 0. Hemoglobin. Taylor & Francis; 2020. pp. 1–7.

Mohan JS, Lip GYH, Wright J, Bareford D, Blann AD. Plasma levels of tissue factor and soluble E-selectin in sickle cell disease: relationship to genotype and to inflammation. Blood Coagul Fibrinolysis. 2005;16:209–14.

Article  PubMed  CAS  Google Scholar 

Hedo CC, Aken’ova YA, Okpala IE, Durojaiye AO, Salimonu LS. Acute phase reactants and severity of homozygous sickle cell disease. J Intern Med. 1993;233:467–70.

Article  PubMed  CAS  Google Scholar 

Noubouossie DF, Lê PQ, Corazza F, Debaugnies F, Rozen L, Ferster A, et al. Thrombin generation reveals high procoagulant potential in the plasma of sickle cell disease children. Am J Hematol. 2012;87:145–9.

Article  PubMed  CAS  Google Scholar 

Noubouossie D, Key NS, Ataga KI. Coagulation abnormalities of sickle cell disease: Relationship with clinical outcomes and the effect of disease modifying therapies. Blood Rev [Internet]. Elsevier Ltd; 2016;30:245–56. Available from: https://doi.org/10.1016/j.blre.2015.12.003

Ataga KI, Key NS. Hypercoagulability in sickle cell disease: new approaches to an old problem. Hematol Am Soc Hematol Educ Program. 2007;2:91–6.

Article  Google Scholar 

Westerman MP, Green D, Beaman K, Freels S, Boggio L, Allen S, et al. Coagulation changes in individuals with sickle cell trait. Am J Hematol. 2002;94:89–94.

Article  Google Scholar 

Tomer A, Harker LA, Kasey S, Eckman JR. Thrombogenesis in sickle cell disease. J Lab Clin Med. 2001;137:398–407.

Article  PubMed  CAS  Google Scholar 

Francis RBJ. Protein S deficiency in sickle cell anemia. J Lab Clin Med United States. 1988;111:571–6.

CAS  Google Scholar 

Peters M, Plaat BE, ten Cate H, Wolters HJ, Weening RS, Brandjes DP. Enhanced thrombin generation in children with sickle cell disease. Thromb Haemost Ger. 1994;71:169–72.

CAS  Google Scholar 

Marfaing-Koka A, Boyer-Neumann C, Wolf M, Leroy-Matheron C, Cynober T, Tchernia G. Decreased protein S activity in sickle cell disease. Nouv Rev Fr Hematol Ger. 1993;35:425–30.

CAS  Google Scholar 

Noubouossie DCF, Lê PQ, Rozen L, Debaugnies F, Ferster A, Demulder A. Evaluation of the procoagulant activity of endogenous phospholipids in the platelet-free plasma of children with sickle cell disease using functional assays. Thromb Res [Internet]. Elsevier B.V.; 2012;130:259–64. Available from: https://doi.org/10.1016/j.thromres.2011.10.016

Chantrathammachart P, Mackman N, Sparkenbaugh E, Wang JG, Parise LV, Kirchhofer D, et al. Tissue factor promotes activation of coagulation and inflammation in a mouse model of sickle cell disease. Blood. 2012;120:636–46.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sparkenbaugh EM, Chantrathammachart P, Wang S, Jonas W, Kirchhofer D, Gailani D, et al. Excess of Heme induces tissue factor-dependent activation of coagulation in mice. Haematologica. 2015;100:308–13.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Van Beers EJ, Schaap MCL, Berckmans RJ, Nieuwland R, Sturk A, Van Doormaal FF, et al. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica. 2009;94:1513–9.

Article  PubMed  PubMed Central  Google Scholar 

Westerman M, Pizzey A, Hirschman J, Cerino M, Weil-Weiner Y, Ramotar P, et al. Microvesicles in haemoglobinopathies offer insights into mechanisms of hypercoagulability, haemolysis and the effects of therapy. Br J Haematol. 2008;142:126–35.

Article  PubMed  Google Scholar 

Van TLJ, van Heerde WL, Landburg PP, Boderie MJ, Muskiet FAJ, Jacobs N, et al. Plasma annexin A5 and microparticle phosphatidylserine levels are elevated in sickle cell disease and increase further during painful crisis. Biochem Biophys Res Commun [Internet]. Elsevier Inc.; 2009;390:161–4. Available from: https://doi.org/10.1016/j.bbrc.2009.09.102

Toledo SLO, Guedes JVM, Alpoim PN, Rios DRA, de Pinheiro M. Sickle cell disease: hemostatic and inflammatory changes, and their interrelation. Clin Chim Acta. 2019;493:129–37.

Article  PubMed  CAS  Google Scholar 

Lim MY, Ataga KI, Key NS. Hemostatic abnormalities in sickle cell disease. Curr Opin Hematol. 2013;20:472–7.

Article  PubMed  CAS  Google Scholar 

Qari MH, Dier U, Mousa SA. Biomarkers of inflammation, growth factor, and coagulation activation in patients with sickle cell disease. Clinical and Applied Thrombosis/Hemostasis. 2012.

Ataga KI, Moore CG, Hillery CA, Jones S, Whinna HC, Strayhorn D, et al. Coagulation activation and inflammation in sickle cell disease-associated pulmonary hypertension. Haematologica. 2008;93:20–6.

Article  PubMed  CAS  Google Scholar 

Keikhaei B, Mohseni AR, Norouzirad R, Alinejadi M, Ghanbari S, Shiravi F, et al. Altered levels of pro-inflammatory cytokines in sickle cell disease patients during vaso-occlusive crises and the steady state condition. Eur Cytokine Netw. 2013;24:45–52.

Article  PubMed  CAS  Google Scholar 

Hebbel RP, Osarogiagbon R, Kaul D. The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy. Microcirculation United States. 2004;11:129–51.

Article  CAS  Google Scholar 

Smith RA, Mankelow TJ, Drizou D, Bullock T, Latham T, Trompeter S, et al. Large red cell-derived membrane particles are major contributors to hypercoagulability in sickle cell disease. Sci Rep [Internet]. Nature Publishing Group UK; 2021;11:1–9. Available from: https://doi.org/10.1038/s41598-021-90477-z

Whelihan MF, Lim MY, Mooberry MJ, Piegore MG, Ilich A, Wogu A, et al. Thrombin generation and cell-dependent hypercoagulability in sickle cell disease. J Thromb Haemost. 2016;14:1941–52.

Article  PubMed  CAS  Google Scholar 

Lizarralde-Iragorri MA, Shet AS. Sickle cell disease: A paradigm for venous thrombosis pathophysiology. Int J Mol Sci. 2020;21:1–20.

Article  Google Scholar 

Amira J, Souheil Z, Takoua M, Samia A, Jalila BK, Mohamed B. Pulmonary embolism in patients with sickle cell disease in intensive care unit: a challenging diagnosis. Ann Intensive Care [Internet]. 2018;8:760–6. Available from: https://www.embase.com/search/results?subaction=viewrecord%26id=L620836872%26from=export U2 - L620836872.

Richard OF, Jeffrey J, Jeanne EH, James CZ, Eldad AH, Steven LS. Frequency of glucose-6-phosphate dehydrogenase deficient packed red blood cell units in a metropolitan transfusion service. Transfusion. 2013;53(3):606–11. https://doi.org/10.1111/j.1537-2995.2012.03765.x.

Article  CAS  Google Scholar 

Rakhi PN, Michael BS, Bailey J, Carlton H, Jodi BS, Sophie L. Venous thromboembolism incidence in the cooperative study of sickle cell disease. J Thromb Haemost. 2014;12(12):2010–6. https://doi.org/10.1111/jth.12744.

Article  Google Scholar 

Marshall C, Brereton P, Systematic Review Toolbox. A catalogue of tools to support systematic reviews systematic review toolbox : A catalogue of tools to support systematic reviews. 2015; https://doi.org/10.1145/2745802.2745824

Baethge C, Goldbeck-Wood S, Mertens S. SANRA—a scale for the quality assessment of narrative review articles. Res Integr Peer Rev Res Integr Peer Rev. 2019;4:1–8.

Google Scholar 

Higgins JPT, Morgan RL, Rooney AA, Taylor KW, Thayer KA, Silva RA, et al. A tool to assess risk of bias in non-randomized follow-up studies of exposure effects (ROBINS-E). Environ Int. 2024;186.

Noubiap JJ, Temgoua MN, Tankeu R, Tochie JN, Wonkam A, Bigna JJ. Sickle cell disease, sickle trait and the risk for venous thromboembolism: A systematic review and meta-analysis. Thromb J Thromb J. 2018;16:1–8.

Google Scholar 

Chekkal M, Rahal MCA, Moulasserdoun K, Seghier F. Increased level of factor VIII and physiological inhibitors of coagulation in patients with sickle cell disease. Indian J Hematol Blood Transfus Springer India. 2017;33:235–8.

Article  Google Scholar 

Qari MH, Dier U, Mousa SA. Biomarkers of inflammation, growth factor, and coagulation activation in patients with sickle cell disease. Clin Appl Thromb. 2012;18:195–200.

Article  CAS  Google Scholar 

Belhaj Nefissi R, Doggui R, Ouali F, Messaoud T, Gritli N, Factor V, Leiden. G1691A, prothrombin G20210A, and MTHFR C677T and A1298C mutations in patients with sickle cell disease in Tunisia. Volume 42. Hemoglobin. Informa Healthcare USA, Inc; 2018. pp. 96–102.

Papadogeorgou P, Valsami S, Boutsikou M, Pergantou E, Mantzou A, Papassotiriou I, et al. Coagulation profile in neonates with congenital heart disease: A pilot study. Med (B Aires). 2024;60:268.

Google Scholar 

Al-Saqladi AWM, Bin-Gadeem HA, Brabin BJ. Utility of plasma transferrin receptor, ferritin and inflammatory markers in children with sickle cell disease. Paediatr Int Child Health. 2012;32:27–34.

Article  PubMed  Google Scholar 

Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:1–13.

Article 

Comments (0)

No login
gif