Antony T et al (2003) Cellular polyamines promote the aggregation of alpha-synuclein. J Biol Chem 278(5):3235–3240
Article CAS PubMed Google Scholar
Bekebrede AK et al (2020) The molecular and physiological effects of protein-derived polyamines in the intestine. Nutrients 12(1):197. https://doi.org/10.3390/nu12010197
Article CAS PubMed PubMed Central Google Scholar
Betancourt L et al (2018) Micellar electrokinetic chromatography with laser induced fluorescence detection shows increase of putrescine in erythrocytes of Parkinson’s disease patients. J Chromatogr B Analyt Technol Biomed Life Sci 1081–1082:51
Buck PO et al (2011) Examination of the UPDRS bradykinesia subscale: equivalence, reliability, and validity. J Parkinson Dis 1(3):253–258
Büttner S et al (2014) Spermidine protects against α-synuclein neurotoxicity. Cell Cycle 13(24):3903–3908
Article PubMed PubMed Central Google Scholar
Del Tredici K, Braak H (2016) Review: sporadic Parkinson’s disease: development and distribution of α-synuclein pathology. Neuropathol Appl Neurobiol 42(1):33–50
Fahn S, Elton RL, UPDRS Development Committee (1987). Unified Parkinson’s disease rating. In: Fahn S, Marsden CD, Calne D, Goldstein M, eds. Recent Developments in Parkinson’s disease, vol 2. MacMillan Healthcare Information; :153–163,293–304
Gelpi E et al (2014) Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders. Mov Disord 29(8):1010–1018
Gomes-Trollin C et al (2002) Increased red blood cell polyamines in ALS and Parkinson’s disease. Exptl Neurol 177(2):515–520
Grabenauer M et al (2008) Spermine binding to Parkinson’s protein α-synuclein and its disease-related A30P and A53T mutants. J Phys Chem B 112(35):11147–11154
Article CAS PubMed PubMed Central Google Scholar
Hirayama M, Ohno K (2021) Parkinson’s disease and gut microbiota. Ann Nutr Metab 77(Suppl 2):28–35. https://doi.org/10.1159/000518147
Article CAS PubMed Google Scholar
Igarashi K, Kashiwagi K (2021) Functional roles of polyamines and their metabolite acrolein in eukaryotic cells. Amino Acids 53(10):1473–1492
Article CAS PubMed Google Scholar
Jankovic J et al (1990) Variable expression of Parkinson’s disease: a base-line analysis of the DATATOP cohort. Neurology 40(10):1529–1534
Article CAS PubMed Google Scholar
Kwon EH et al (2022) Update on CSF biomarkers in Parkinson’s disease. Biomolecules 12(2):329. https://doi.org/10.3390/niom12020329
Article CAS PubMed PubMed Central Google Scholar
Lewandowski NM et al (2010) Polyamine pathway contributes to the pathogenesis of Parkinson disease. Proc Natl Acad Sci USA107(39):16970–16975
LeWitt P et al (1992) Markers of dopamine metabolism in Parkinson’s disease. Neurology 42(11):2111–2117
Article CAS PubMed Google Scholar
LeWitt P, Oakes D, Cui LU, Parkinson Study Group (1997) The need for levodopa as an end point of Parkinson’s disease progression in a clinical trial of selegiline and a-tocopherol. Mov Disord 12(2):183–189
Article CAS PubMed Google Scholar
LeWitt PA, Li J, Wu K-H, Lu M (2023) Diagnostic metabolomic profiling of Parkinson disease biospecimens. Neurobiol Dis 177:105962
Article CAS PubMed Google Scholar
Miller-Fleming L et al (2015) Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol 427(21):3389–3406
Article CAS PubMed Google Scholar
Moinard C, Cyniber L, de Bandt JP (2005) Polyamines: metabolism and implications in human diseases. Clin Nutr 24(2):184–197
Article CAS PubMed Google Scholar
Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (2024) The pathogenesis of Parkinson’s disease. Lancet 403(10423):293–304
Article CAS PubMed Google Scholar
Paik M-J et al (2010) Polyamine patterns in the cerebrospinal fluid of patients with Parkinson’s disease and multiple system atrophy. Clin Chim Acta 411(19–20):1532–1535
Article CAS PubMed Google Scholar
Park J-S, Blair NF, Sue CM (2015) The role of ATP13A2 in Parkinson’s disease: clinical phenotypes and molecular mechanisms. Mov Disord 30(6):770–779
Article CAS PubMed Google Scholar
Parkinson Study Group (1989a) DATATOP: a multicenter controlled clinical trial in early Parkinson’s disease. Arch Neurol 46(10):1052–1060
Parkinson Study Group (1989b) Deprenyl forestalls disability in early Parkinson’s disease: a controlled clinical trial. N Engl J Med 321(20):1364–1371
Parkinson Study Group (1993) Effect of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 328(3):176–18
Pegg AE (2008) Spermidine/spermine-N(1)-acetyltransferase: a key metabolic regulator. Am J Physiol Endocrinol Metab 294(6):E995–1010
Article CAS PubMed Google Scholar
Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB Life 61(9):880–894
Article CAS PubMed PubMed Central Google Scholar
Peng K-W et al (2024) Identification and validation of N-acetylputrescine in combination with non-canonical clinical features as a Parkinson’s disease biomarker panel. Sci Rep 14(1):10036. https://doi.org/10.1038/s41598-024-60872-3
Article CAS PubMed PubMed Central Google Scholar
Phillips PC, Kremzner LT, DeVivo DC (1986) Cerebrospinal fluid polyamines: biochemical markers of malignant childhood brain tumors. Ann Neurol 19(4):360–364
Article CAS PubMed Google Scholar
Ranxhi B et al (2025) Regulation of polyamine interconversion enzymes affects α-synuclein levels and toxicity in a Drosophila model of Parkinson’s disease. NPJ npg Parkinson’s Dis. 11:231. https://doi.org/10.1038/s41531-025-01087-9
Rock DM, Macdonald RL (1995) Polyamine regulation of N-methyl-D-aspartate receptor channels. Annu Rev Pharmacol Toxicol 35:463–482
Article CAS PubMed Google Scholar
Roede JR et al (2013) Serum metabolomics on slow vs. rapid motor progression Parkinson’s disease: a pilot study. PLoS One 8(10):e77629. https://doi.org/10.1371/journal.pone.0077629
Article CAS PubMed PubMed Central Google Scholar
Saiki S et al (2019) A metabolic profile of polyamines in Parkinson’s disease: a promising biomarker. Ann Neurol 86(2):251–263
Article CAS PubMed PubMed Central Google Scholar
Santoro L, Breedveld GJ, Manganelli F et al (2011) Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics 12(1):33–39
Comments (0)