Serum L-ornithine-derived polyamines as indicators of Parkinson disease progression

Antony T et al (2003) Cellular polyamines promote the aggregation of alpha-synuclein. J Biol Chem 278(5):3235–3240

Article  CAS  PubMed  Google Scholar 

Bekebrede AK et al (2020) The molecular and physiological effects of protein-derived polyamines in the intestine. Nutrients 12(1):197. https://doi.org/10.3390/nu12010197

Article  CAS  PubMed  PubMed Central  Google Scholar 

Betancourt L et al (2018) Micellar electrokinetic chromatography with laser induced fluorescence detection shows increase of putrescine in erythrocytes of Parkinson’s disease patients. J Chromatogr B Analyt Technol Biomed Life Sci 1081–1082:51

Article  PubMed  Google Scholar 

Buck PO et al (2011) Examination of the UPDRS bradykinesia subscale: equivalence, reliability, and validity. J Parkinson Dis 1(3):253–258

Article  Google Scholar 

Büttner S et al (2014) Spermidine protects against α-synuclein neurotoxicity. Cell Cycle 13(24):3903–3908

Article  PubMed  PubMed Central  Google Scholar 

Del Tredici K, Braak H (2016) Review: sporadic Parkinson’s disease: development and distribution of α-synuclein pathology. Neuropathol Appl Neurobiol 42(1):33–50

Article  PubMed  Google Scholar 

Fahn S, Elton RL, UPDRS Development Committee (1987). Unified Parkinson’s disease rating. In: Fahn S, Marsden CD, Calne D, Goldstein M, eds. Recent Developments in Parkinson’s disease, vol 2. MacMillan Healthcare Information; :153–163,293–304

Gelpi E et al (2014) Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders. Mov Disord 29(8):1010–1018

Article  PubMed  Google Scholar 

Gomes-Trollin C et al (2002) Increased red blood cell polyamines in ALS and Parkinson’s disease. Exptl Neurol 177(2):515–520

Article  Google Scholar 

Grabenauer M et al (2008) Spermine binding to Parkinson’s protein α-synuclein and its disease-related A30P and A53T mutants. J Phys Chem B 112(35):11147–11154

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirayama M, Ohno K (2021) Parkinson’s disease and gut microbiota. Ann Nutr Metab 77(Suppl 2):28–35. https://doi.org/10.1159/000518147

Article  CAS  PubMed  Google Scholar 

Igarashi K, Kashiwagi K (2021) Functional roles of polyamines and their metabolite acrolein in eukaryotic cells. Amino Acids 53(10):1473–1492

Article  CAS  PubMed  Google Scholar 

Jankovic J et al (1990) Variable expression of Parkinson’s disease: a base-line analysis of the DATATOP cohort. Neurology 40(10):1529–1534

Article  CAS  PubMed  Google Scholar 

Kwon EH et al (2022) Update on CSF biomarkers in Parkinson’s disease. Biomolecules 12(2):329. https://doi.org/10.3390/niom12020329

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewandowski NM et al (2010) Polyamine pathway contributes to the pathogenesis of Parkinson disease. Proc Natl Acad Sci USA107(39):16970–16975

Article  Google Scholar 

LeWitt P et al (1992) Markers of dopamine metabolism in Parkinson’s disease. Neurology 42(11):2111–2117

Article  CAS  PubMed  Google Scholar 

LeWitt P, Oakes D, Cui LU, Parkinson Study Group (1997) The need for levodopa as an end point of Parkinson’s disease progression in a clinical trial of selegiline and a-tocopherol. Mov Disord 12(2):183–189

Article  CAS  PubMed  Google Scholar 

LeWitt PA, Li J, Wu K-H, Lu M (2023) Diagnostic metabolomic profiling of Parkinson disease biospecimens. Neurobiol Dis 177:105962

Article  CAS  PubMed  Google Scholar 

Miller-Fleming L et al (2015) Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol 427(21):3389–3406

Article  CAS  PubMed  Google Scholar 

Moinard C, Cyniber L, de Bandt JP (2005) Polyamines: metabolism and implications in human diseases. Clin Nutr 24(2):184–197

Article  CAS  PubMed  Google Scholar 

Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (2024) The pathogenesis of Parkinson’s disease. Lancet 403(10423):293–304

Article  CAS  PubMed  Google Scholar 

Paik M-J et al (2010) Polyamine patterns in the cerebrospinal fluid of patients with Parkinson’s disease and multiple system atrophy. Clin Chim Acta 411(19–20):1532–1535

Article  CAS  PubMed  Google Scholar 

Park J-S, Blair NF, Sue CM (2015) The role of ATP13A2 in Parkinson’s disease: clinical phenotypes and molecular mechanisms. Mov Disord 30(6):770–779

Article  CAS  PubMed  Google Scholar 

Parkinson Study Group (1989a) DATATOP: a multicenter controlled clinical trial in early Parkinson’s disease. Arch Neurol 46(10):1052–1060

Article  Google Scholar 

Parkinson Study Group (1989b) Deprenyl forestalls disability in early Parkinson’s disease: a controlled clinical trial. N Engl J Med 321(20):1364–1371

Article  Google Scholar 

Parkinson Study Group (1993) Effect of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 328(3):176–18

Article  Google Scholar 

Pegg AE (2008) Spermidine/spermine-N(1)-acetyltransferase: a key metabolic regulator. Am J Physiol Endocrinol Metab 294(6):E995–1010

Article  CAS  PubMed  Google Scholar 

Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB Life 61(9):880–894

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng K-W et al (2024) Identification and validation of N-acetylputrescine in combination with non-canonical clinical features as a Parkinson’s disease biomarker panel. Sci Rep 14(1):10036. https://doi.org/10.1038/s41598-024-60872-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phillips PC, Kremzner LT, DeVivo DC (1986) Cerebrospinal fluid polyamines: biochemical markers of malignant childhood brain tumors. Ann Neurol 19(4):360–364

Article  CAS  PubMed  Google Scholar 

Ranxhi B et al (2025) Regulation of polyamine interconversion enzymes affects α-synuclein levels and toxicity in a Drosophila model of Parkinson’s disease. NPJ npg Parkinson’s Dis. 11:231. https://doi.org/10.1038/s41531-025-01087-9

Rock DM, Macdonald RL (1995) Polyamine regulation of N-methyl-D-aspartate receptor channels. Annu Rev Pharmacol Toxicol 35:463–482

Article  CAS  PubMed  Google Scholar 

Roede JR et al (2013) Serum metabolomics on slow vs. rapid motor progression Parkinson’s disease: a pilot study. PLoS One 8(10):e77629. https://doi.org/10.1371/journal.pone.0077629

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saiki S et al (2019) A metabolic profile of polyamines in Parkinson’s disease: a promising biomarker. Ann Neurol 86(2):251–263

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santoro L, Breedveld GJ, Manganelli F et al (2011) Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics 12(1):33–39

Article  CAS  PubMed 

Comments (0)

No login
gif