Dolmans MM, Donnez J. Fertility preservation in women for medical and social reasons: oocytes vs ovarian tissue. Best Pract Res Clin Obstet Gynaecol. 2021;70:63–80. https://doi.org/10.1016/j.bpobgyn.2020.06.011.
Wolfe JD, Thomeer MB, Reczek R. Age at first birth and women’s midlife health: cohort and race differences across the 20th century. Soc Sci Med. 2023;331:116097. https://doi.org/10.1016/j.socscimed.2023.116097.
Article PubMed PubMed Central Google Scholar
Mishra SR, Chung HF, Waller M, Mishra GD. Duration of estrogen exposure during reproductive years, age at menarche and age at menopause, and risk of cardiovascular disease events, all-cause and cardiovascular mortality: a systematic review and meta-analysis. BJOG. 2021Apr;128(5):809–21. https://doi.org/10.1111/1471-0528.16524.
Garg A, Seli E. Leukocyte telomere length and DNA methylome as biomarkers of ovarian reserve and embryo aneuploidy: the intricate relationship between somatic and reproductive aging. Fertil Steril. 2024;121(1):26–33. https://doi.org/10.1016/j.fertnstert.2023.11.011.
Ferreira AF, Soares M, Almeida-Santos T, Ramalho-Santos J, Sousa AP. Aging and oocyte competence: a molecular cell perspective. WIREs Mech Dis. 2023;15(5):e1613. https://doi.org/10.1002/wsbm.1613.
Alberico HC, Woods DC. Role of granulosa cells in the aging ovarian landscape: a focus on mitochondrial and metabolic function. Front Physiol. 2022;12:800739. https://doi.org/10.3389/fphys.2021.800739.
Article PubMed PubMed Central Google Scholar
Khan SA, Reed L, Schoolcraft WB, Yuan Y, Krisher RL. Control of mitochondrial integrity influences oocyte quality during reproductive aging. Mol Hum Reprod. 2023;29(9):gaad028. https://doi.org/10.1093/molehr/gaad028.
Olsen KW, Castillo-Fernandez J, Zedeler A, Freiesleben NC, Bungum M, Chan AC, et al. A distinctive epigenetic ageing profile in human granulosa cells. Hum Reprod. 2020;35(6):1332–45. https://doi.org/10.1093/humrep/deaa071.
Lara-Molina EE, Franasiak JM, Marin D, Tao X, Díaz-Gimeno P, Florensa M, et al. Cumulus cells have longer telomeres than leukocytes in reproductive-age women. Fertil Steril. 2020;113(1):217–23. https://doi.org/10.1016/j.fertnstert.2019.08.089.
Sethuram R, Bazzi AA, Salih SM, Puscheck EE. Peripheral lymphocyte telomere dysfunction: a valid surrogate marker for female fertility? Fertil Steril. 2021;115(1):85–6. https://doi.org/10.1016/j.fertnstert.2020.10.063.
Morin SJ, Tao X, Marin D, Zhan Y, Landis J, Bedard J, et al. DNA methylation-based age prediction and telomere length in white blood cells and cumulus cells of infertile women with normal or poor response to ovarian stimulation. Aging (Albany NY). 2018;10(12):3761–73. https://doi.org/10.18632/aging.101670.
M’kacher R, Colicchio B, Marquet V, Borie C, Najar W, Hempel WM, et al. Telomere aberrations, including telomere loss, doublets, and extreme shortening, are increased in patients with infertility. Fertil Steril. 2021;115(1):164–73. https://doi.org/10.1016/j.fertnstert.2020.07.005.
May-Panloup P, Boucret L, Chao de la Barca JM, Desquiret-Dumas V, Ferré-L'Hotellier V, Morinière C, Descamps P, Procaccio V, Reynier P. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update. 2016 Nov;22(6):725–743. https://doi.org/10.1093/humupd/dmw028.
Cacciottola L, Donnez J, Dolmans MM. Oxidative stress, mitochondria, and infertility: is the relationship fully established? Fertil Steril. 2021;116(2):306–8. https://doi.org/10.1016/j.fertnstert.2021.04.026.
Boucret L, Chao de la Barca JM, Morinière C, Desquiret V, Ferré-L' Hôtellier V, Descamps P, Marcaillou C, Reynier P, Procaccio V, May-Panloup P. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum Reprod. 2015 Jul;30(7):1653–64. https://doi.org/10.1093/humrep/dev114.
Jiang Z, Shi C, Han H, Wang Y, Liang R, Chen X, et al. Mitochondria-related changes and metabolic dysfunction in low prognosis patients under the POSEIDON classification. Hum Reprod. 2021;36(11):2904–15. https://doi.org/10.1093/humrep/deab203.
Smits MAJ, Schomakers BV, van Weeghel M, Wever EJM, Wüst RCI, Dijk F, et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction. Hum Reprod. 2023;2(11):2208–20. https://doi.org/10.1093/humrep/dead177.
Johnston IG, Burgstaller JP, Havlicek V, Kolbe T, Rülicke T, Brem G, et al. Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism. Elife. 2015;4:e07464. https://doi.org/10.7554/eLife.07464.
Article PubMed PubMed Central Google Scholar
Babayev E, Wang T, Szigeti-Buck K, Lowther K, Taylor HS, Horvath T, et al. Reproductive aging is associated with changes in oocyte mitochondrial dynamics, function, and mtDNA quantity. Maturitas. 2016;93:121–30. https://doi.org/10.1016/j.maturitas.2016.06.015.
Article PubMed PubMed Central Google Scholar
Masciangelo R, Chiti MC, Camboni A, Amorim CA, Donnez J, Dolmans MM. Mitochondrial content, activity, and morphology in prepubertal and adult human ovaries. J Assist Reprod Genet. 2021;38(10):2581–90. https://doi.org/10.1007/s10815-021-02282-2.
Article PubMed PubMed Central Google Scholar
Moustakli E, Zikopoulos A, Sakaloglou P, Bouba I, Sofikitis N, Georgiou I. Functional association between telomeres, oxidation and mitochondria. Front Reprod Health. 2023;5:1107215. https://doi.org/10.3389/frph.2023.1107215.
Article PubMed PubMed Central Google Scholar
Assalve G, Lunetti P, Rocca MS, Cosci I, Di Nisio A, Ferlin A, et al. Exploring the link between telomeres and mitochondria: mechanisms and implications in different cell types. Int J Mol Sci. 2025;26(3):993. https://doi.org/10.3390/ijms26030993.
Article PubMed PubMed Central Google Scholar
Ju W, et al. Mechanisms of mitochondrial dysfunction in ovarian aging and potential interventions. Front Endocrinol (Lausanne). 2024Apr;17(15):1361289.
Baerlocher GM, Vulto I, de Jong G, Lansdorp PM. Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat Protoc. 2006;1(5):2365–76. https://doi.org/10.1038/nprot.2006.263.
Chiti MC, Dolmans MM, Hobeika M, Cernogoraz A, Donnez J, Amorim CA. A modified and tailored human follicle isolation procedure improves follicle recovery and survival. J Ovarian Res. 2017;10(1):71. https://doi.org/10.1186/s13048-017-0366-8.
Article PubMed PubMed Central Google Scholar
Gougeon A, Chainy GB. Morphometric studies of small follicles in ovaries of women at different ages. J Reprod Fertil. 1987;81(2):433–42. https://doi.org/10.1530/jrf.0.0810433.
Hossay C, Tramacere F, Cacciottola L, Camboni A, Squifflet JL, Donnez J, et al. Follicle outcomes in human ovarian tissue: effect of freezing, culture, and grafting. Fertil Steril. 2023;119(1):135–45. https://doi.org/10.1016/j.fertnstert.2022.09.360.
Barretta M, Cacciottola L, Hossay C, Donnez J. Impact of human ovarian tissue manipulation on follicles: evidence of a potential first wave of follicle activation during fertility preservation procedures. J Assist Reprod Genet. 2023;40(12):2769–76. https://doi.org/10.1007/s10815-023-02930-9.
Article PubMed PubMed Central Google Scholar
Nguyen TYT, Cacciottola L, Camboni A, Ravau J, De Vos M, Demeestere I, et al. Ovarian tissue cryopreservation and transplantation in patients with central nervous system tumours. Hum Reprod. 2021;36(5):1296–309. https://doi.org/10.1093/humrep/deaa353.
te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002 Mar-Apr;8(2):141–54. https://doi.org/10.1093/humupd/8.2.141.
Wallace WH, Kelsey TW. Human ovarian reserve from conception to the menopause. PLoS ONE. 2010;5(1):e8772. https://doi.org/10.1371/journal.pone.0008772.
Article PubMed PubMed Central Google Scholar
Ata B, Seyhan A, Seli E. Diminished ovarian reserve versus ovarian aging: overlaps and differences. Curr Opin Obstet Gynecol. 2019;31(3):139–47. https://doi.org/10.1097/GCO.0000000000000536.
Comments (0)