Transcriptomics empower assisted reproductive technology in decoding gamete and embryo development potential: a review

Qiao J, et al. A lancet commission on 70 years of women’s reproductive, maternal, newborn, child, and adolescent health in China. Lancet. 2021;397:2497–536. https://doi.org/10.1016/S0140-6736(20)32708-2.

Article  CAS  PubMed  Google Scholar 

Huang J, et al. Global, regional, and national burden of infertility, 1990–2021: systematic analysis of the Global burden of disease study 2021. J Assist Reprod Genet. 2025;42:1025–8. https://doi.org/10.1007/s10815-025-03429-1.

Article  PubMed  Google Scholar 

Braverman AM, Davoudian T, Levin IK, Bocage A, Wodoslawsky S. Depression, anxiety, quality of life, and infertility: a global lens on the last decade of research. Fertil Steril. 2024;121:379–83. https://doi.org/10.1016/j.fertnstert.2024.01.013.

Article  PubMed  Google Scholar 

Carson SA, Kallen AN. Diagnosis and management of infertility: a review. JAMA. 2021;326:65–76. https://doi.org/10.1001/jama.2021.4788.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei Y, et al. Genetic mechanisms of fertilization failure and early embryonic arrest: a comprehensive review. Hum Reprod Update. 2024;30:48–80. https://doi.org/10.1093/humupd/dmad026.

Article  CAS  PubMed  Google Scholar 

Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA. Spermatozoal RNA profiles of normal fertile men. Lancet. 2002;360:772–7. https://doi.org/10.1016/s0140-6736(02)09899-9.

Article  CAS  PubMed  Google Scholar 

Sendler E, et al. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res. 2013;41:4104–17. https://doi.org/10.1093/nar/gkt132.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo J, et al. Chromatin and single-cell RNA-Seq profiling reveal dynamic signaling and metabolic transitions during human spermatogonial stem cell development. Cell Stem Cell. 2017;21:533-546.e536. https://doi.org/10.1016/j.stem.2017.09.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sohni A, et al. The neonatal and adult human testis defined at the single-cell level. Cell Rep. 2019;26:1501-1517.e1504. https://doi.org/10.1016/j.celrep.2019.01.045.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shami AN, et al. Single-cell RNA sequencing of human, macaque, and mouse testes uncovers conserved and divergent features of mammalian spermatogenesis. Dev Cell. 2020;54:529-547.e512. https://doi.org/10.1016/j.devcel.2020.05.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang M, et al. Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell. 2018;23:599-614.e594. https://doi.org/10.1016/j.stem.2018.08.007.

Article  CAS  PubMed  Google Scholar 

Huang Y, et al. Single-cell multi-omics sequencing of human spermatogenesis reveals a DNA demethylation event associated with male meiotic recombination. Nat Cell Biol. 2023;25:1520–34. https://doi.org/10.1038/s41556-023-01232-7.

Article  CAS  PubMed  Google Scholar 

Wang X, et al. Decoding the pathogenesis of spermatogenic failure in cryptorchidism through single-cell transcriptomic profiling. Cell Rep Med. 2024;5:101709. https://doi.org/10.1016/j.xcrm.2024.101709.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, et al. Deciphering the molecular characteristics of human idiopathic nonobstructive azoospermia from the perspective of germ cells. Adv Sci. 2023;10:e2206852. https://doi.org/10.1002/advs.202206852.

Article  CAS  Google Scholar 

Kordowitzki P, Sokołowska G, Wasielak-Politowska M, Skowronska A, Skowronski MT. Pannexins and connexins: their relevance for oocyte developmental competence. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22115918.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, et al. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell. 2018;72:1021-1034.e1024. https://doi.org/10.1016/j.molcel.2018.10.029.

Article  CAS  PubMed  Google Scholar 

Zhao H, et al. Single-cell transcriptomics of human oocytes: environment-driven metabolic competition and compensatory mechanisms during oocyte maturation. Antioxid Redox Signal. 2019;30:542–59. https://doi.org/10.1089/ars.2017.7151.

Article  CAS  PubMed  Google Scholar 

Li J, et al. Aberrant spliceosome expression and altered alternative splicing events correlate with maturation deficiency in human oocytes. Cell Cycle. 2020;19:2182–94. https://doi.org/10.1080/15384101.2020.1799295.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao ZH, et al. RNA-seq transcriptome reveals different molecular responses during human and mouse oocyte maturation and fertilization. BMC Genomics. 2020;21:475. https://doi.org/10.1186/s12864-020-06885-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu W, et al. Single-cell transcriptome and translatome dual-omics reveals potential mechanisms of human oocyte maturation. Nat Commun. 2022;13:5114. https://doi.org/10.1038/s41467-022-32791-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, et al. Maternal mRNA deadenylation is defective in in vitro matured mouse and human oocytes. Nat Commun. 2024;15:5550. https://doi.org/10.1038/s41467-024-49695-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ducreux B, Ferreux L, Patrat C, Fauque P. Overview of gene expression dynamics during human oogenesis/folliculogenesis. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms25010033.

Article  PubMed  PubMed Central  Google Scholar 

Xue Z, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500:593–7. https://doi.org/10.1038/nature12364.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan L, et al. Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20:1131–9. https://doi.org/10.1038/nsmb.2660.

Article  CAS  PubMed  Google Scholar 

Guo Q, et al. Allelic transcriptomic profiling identifies the role of PRD-like homeobox genes in human embryonic-cleavage-stage arrest. Dev Cell. 2025;60:1290-1303.e1296. https://doi.org/10.1016/j.devcel.2024.12.031.

Article  CAS  PubMed  Google Scholar 

Yuan S, et al. Human zygotic genome activation is initiated from paternal genome. Cell Discov. 2023;9:13. https://doi.org/10.1038/s41421-022-00494-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang T, et al. Single-cell multi-omics profiling of human preimplantation embryos identifies cytoskeletal defects during embryonic arrest. Nat Cell Biol. 2024;26:263–77. https://doi.org/10.1038/s41556-023-01328-0.

Article  CAS  PubMed  Google Scholar 

Chousal JN, et al. Molecular profiling of human blastocysts reveals primitive endoderm defects among embryos of decreased implantation potential. Cell Rep. 2024;43:113701.

Comments (0)

No login
gif