The Road to Remyelination in Multiple Sclerosis: Breakthroughs, Challenges, and Considerations for Future Trial Design

Filippi M, Amato MP, Centonze D, et al. Early use of high-efficacy disease-modifying therapies makes the difference in people with multiple sclerosis: an expert opinion. J Neurol. 2022;269(10):5382–94. https://doi.org/10.1007/s00415-022-11193-w. (in Eng).

Article  PubMed  PubMed Central  Google Scholar 

Cerqueira JJ, Berthele A, Cree BAC, et al. Long-term treatment with ocrelizumab in patients with early-stage relapsing MS: nine-year data from the OPERA studies open-label extension. Neurology. 2025;104(4): e210142. https://doi.org/10.1212/wnl.0000000000210142. (in Eng).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lublin FD, Häring DA, Ganjgahi H, et al. How patients with multiple sclerosis acquire disability. Brain. 2022;145(9):awac016. https://doi.org/10.1093/brain/awac016.

Article  Google Scholar 

California SO, Cree BAC, Hollenbach JA, et al. Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol. 2019;85(5):653–66. https://doi.org/10.1002/ana.25463.

Article  Google Scholar 

Lubetzki C, Zalc B, Williams A, et al. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 2020;19(8):678–88. https://doi.org/10.1016/s1474-4422(20)30140-x.

Article  PubMed  Google Scholar 

Plemel JR, Liu W-Q, Yong VW. Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat Rev Drug Discov. 2017;16(9):617–34. https://doi.org/10.1038/nrd.2017.115.

Article  PubMed  CAS  Google Scholar 

Tomassy GS, Berger DR, Chen HH, et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science. 2014;344(6181):319–24. https://doi.org/10.1126/science.1249766. (in Eng).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Green AJ, Gelfand JM, Cree BA, et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet. 2017;390(10111):2481–9. https://doi.org/10.1016/s0140-6736(17)32346-2.

Article  PubMed  CAS  Google Scholar 

Yeung MSY, Djelloul M, Steiner E, et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature. 2019;566(7745):538–42. https://doi.org/10.1038/s41586-018-0842-3.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Franklin RJM, Bodini B, Goldman SA. Remyelination in the central nervous system. Cold Spring Harb Perspect Biol. 2024. https://doi.org/10.1101/cshperspect.a041371. (in Eng).

Article  PubMed  Google Scholar 

Duncan ID, Radcliff AB, Heidari M, et al. The adult oligodendrocyte can participate in remyelination. Proc Natl Acad Sci USA. 2018;115(50):E11807–16. https://doi.org/10.1073/pnas.1808064115.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Barkhof F, Brück W, Groot CJA, et al. Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch Neurol. 2003;60(8):1073–81. https://doi.org/10.1001/archneur.60.8.1073.

Article  PubMed  Google Scholar 

Patrikios P, Stadelmann C, Kutzelnigg A, et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain. 2006;129(12):3165–72. https://doi.org/10.1093/brain/awl217.

Article  PubMed  Google Scholar 

Bramow S, Frischer JM, Lassmann H, et al. Demyelination versus remyelination in progressive multiple sclerosis. Brain. 2010;133(10):2983–98. https://doi.org/10.1093/brain/awq250.

Article  PubMed  Google Scholar 

Prineas JW, Barnard RO, Kwon EE, et al. Multiple sclerosis: remyelination of nascent lesions: remyelination of nascent lesions. Ann Neurol. 1993;33(2):137–51. https://doi.org/10.1002/ana.410330203.

Article  PubMed  CAS  Google Scholar 

Duncan ID, Marik RL, Broman AT, et al. Thin myelin sheaths as the hallmark of remyelination persist over time and preserve axon function. Proc Natl Acad Sci USA. 2017;114(45):E9685–91. https://doi.org/10.1073/pnas.1714183114.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Frischer JM, Weigand SD, Guo Y, et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol. 2015;78(5):710–21. https://doi.org/10.1002/ana.24497.

Article  PubMed  PubMed Central  Google Scholar 

Goldschmidt T, Antel J, König FB, et al. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology. 2009;72(22):1914–21. https://doi.org/10.1212/wnl.0b013e3181a8260a.

Article  PubMed  CAS  Google Scholar 

Heß K, Starost L, Kieran NW, et al. Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol. 2020;140(3):359–75. https://doi.org/10.1007/s00401-020-02189-9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kuhlmann T, Miron V, Cui Q, et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain. 2008;131(7):1749–58. https://doi.org/10.1093/brain/awn096.

Article  PubMed  CAS  Google Scholar 

Chang A, Staugaitis SM, Dutta R, et al. Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann Neurol. 2012;72(6):918–26. https://doi.org/10.1002/ana.23693.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mei F, Fancy SPJ, Shen Y-AA, et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med. 2014;20(8):954–60. https://doi.org/10.1038/nm.3618.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Najm FJ, Madhavan M, Zaremba A, et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature. 2015;522(7555):216–20. https://doi.org/10.1038/nature14335.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mei F, Mayoral SR, Nobuta H, et al. Identification of the Kappa-opioid receptor as a therapeutic target for oligodendrocyte remyelination. J Neurosci. 2016;36(30):7925–35. https://doi.org/10.1523/jneurosci.1493-16.2016.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Charles P, Reynolds R, Seilhean D, et al. Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain. 2002;125(9):1972–9. https://doi.org/10.1093/brain/awf216.

Article  PubMed  Google Scholar 

Back SA, Tuohy TMF, Chen H, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med. 2005;11(9):966–72. https://doi.org/10.1038/nm1279.

Article  PubMed  CAS  Google Scholar 

AlRuwaili R, Al-Kuraishy HM, Al-Gareeb AI, et al. The possible role of brain-derived neurotrophic factor in epilepsy. Neurochem Res. 2024;49(3):533–47. https://doi.org/10.1007/s11064-023-04064-x. (in Eng).

Article  PubMed  CAS  Google Scholar 

Harlow DE, Macklin WB. Inhibitors of myelination: ECM changes, CSPGs and PTPs. Exp Neurol. 2014;251:39–46. https://doi.org/10.1016/j.expneurol.2013.10.017.

Article  PubMed  CAS  Google Scholar 

Lau LW, Keough MB, Haylock-Jacobs S, et al. Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann Neurol. 2012;72(3):419–32.

Comments (0)

No login
gif