Patel D, Grimson F, Mihaylova E, et al. Use of external comparators for health technology assessment submissions based on single-arm trials. Value Health. 2021;24(8):1118–25. https://doi.org/10.1016/j.jval.2021.01.015.
Rippin G, Ballarini N, Sanz H, Largent J, Quinten C, Pignatti F. A review of causal inference for external comparator arm studies. Drug Saf. 2022;45(8):815–37. https://doi.org/10.1007/s40264-022-01206-y.
Ghadessi M, Tang R, Zhou J, et al. A roadmap to using historical controls in clinical trials—by Drug Information Association Adaptive Design Scientific Working Group (DIA-ADSWG). Orphanet J Rare Dis. 2020;15(1):1–19. https://doi.org/10.1186/s13023-020-1332-x.
Burger HU, Gerlinger C, Harbron C, et al. The use of external controls: to what extent can it currently be recommended? Pharm Stat. 2021. https://doi.org/10.1002/pst.2120.
Seeger JD, Davis KJ, Innacone MR, et al. Methods for external control groups for single arm trials or long-term uncontrolled extensions to randomized clinical trials. Pharmacoepidemiol Drug Saf. 2020;29:1382–92. https://doi.org/10.1002/pds.5141.
Article PubMed PubMed Central Google Scholar
Skovlund E, Leufkens HGM, Smyth JF. The use of real-world data in cancer drug development. Eur J Cancer. 2018;101:69–76. https://doi.org/10.1016/j.ejca.2018.06.036.
Article PubMed CAS Google Scholar
Rippin G, Largent J, Hoogendoorn WE, Sanz H, Bosco J, Mack C. External Comparator Cohort studies—clarification of terminology. Front Drug Saf Regul. 2024;3:1321894. https://doi.org/10.3389/fdsfr.2023.1321894.
Rippin G. External comparators and estimands. Front Drug Saf Regul. 2024;3:1332040. https://doi.org/10.3389/fdsfr.2023.1332040.
FDA. Considerations for the design and conduct of externally controlled trials for drug and biological products. Draft Guidance for Industry. 2023. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-design-and-conduct-externally-controlled-trials-drug-and-biological-products. Accessed 7 Jul 2024.
Rippin G, Sanz H, Hoogendoorn WE, et al. Examining the effect of missing data and unmeasured confounding on external comparator studies: case studies and simulations. Drug Saf. 2024. https://doi.org/10.1007/s40264-024-01467-9.
Article PubMed PubMed Central Google Scholar
Durie BGM, Hoering A, Abidi MH, et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet. 2017;389(10068):519–27. https://doi.org/10.1016/S0140-6736(16)31594-X.
Article PubMed CAS Google Scholar
PDS data portal. https://projectdatasphere.org/projectdatasphere/html/home. Accessed 7 Jul 2024.
Guardian Network Research. https://www.guardianresearch.org. Accessed 7 Jul 2024.
Fizazi K, Tran N, Fein L, LATITUDE Investigators, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med. 2017;377(4):352–60. https://doi.org/10.1056/NEJMoa1704174.
Article PubMed CAS Google Scholar
Fizazi K, Tran N, Fein L, et al. Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet Oncol. 2019;20(5):686–700. https://doi.org/10.1016/S1470-2045(19)30082-8.
Article PubMed CAS Google Scholar
YODA Data Portal. http://yoda.yale.edu/. Accessed 7 Jul 2024.
Morris TP, White IR, Crowther MJ. Using simulation studies to evaluate statistical methods. Stat Med. 2019;38(11):2074–102. https://doi.org/10.1002/sim.8086.
Article PubMed PubMed Central Google Scholar
Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Stat Med. 2005;24(11):1713–23. https://doi.org/10.1002/sim.2059.
MICE package—view on the R-project CRAN server: https://cran.r-project.org/web/packages/mice/index.html.
Van Buuren S, Groothuis-Oudshoorn CGMICE. Multivariate imputation by chained equations in R. J Stat Softw. 2011;45(3):1–67. https://doi.org/10.18667/jss.v045.i03.
Faries DE, Zhang X, Zbigniew K, et al. Real world health care data analysis SAS. Cary: SAS Institute; 2020.
Hernán MA, Robins JM. Causal inference: what if. Boca Raton: Chapman & Hall/CRC; 2020.
ICH E9(R1) Expert Working Group. ICH E9(R1) addendum on estimands and sensitivity analysis in clinical trials to the guideline on statistical principles for clinical trials. EMA/CHMP/ICH/436221/2017, 2020. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e9-r1-addendum-estimands-and-sensitivity-analysis-clinical-trials-guideline-statistical-principles-clinical-trials-step-5_en.pdf. Accessed 1 Feb 2025
Davison AC, Hinkley DV. Bootstrap methods and their applications. Cambridge: Cambridge University Press; 1997.
Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials—a practical guide with flowcharts. BMC Med Res Meth. 2017;17:162. https://doi.org/10.1186/s12874-017-0442-1.
White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med. 2011;30:377–99. https://doi.org/10.1002/sim.4067.
Madley-Dowd P, Hughes R, Tilling K, Heron J. The proportion of missing data should not be used to guide decisions on multiple imputation. J Clin Epidemiol. 2019;110:63–73. https://doi.org/10.1016/j.jclinepi.2019.02.016.
Article PubMed PubMed Central Google Scholar
Nguyen CD, Carlin JB, Lee KJ. Model checking in multiple imputation: an overview and case study. Emerg Themes Epidemiol. 2017;14(8):1–12. https://doi.org/10.1186/s12982-017-0062-6.
Hajage D, Chauvet G, Belin L, et al. Closed-form variance estimator for weighted propensity score estimators with survival outcome. Biom J. 2018;60(6):1151–63. https://doi.org/10.1002/bimj.201700330.
Rippin G, Sanz H. External comparator studies and the joint application of the estimand and target trial emulation frameworks. Front Drug Saf Regul. 2024;4:1409102. https://doi.org/10.3389/fdsfr.2024.1409102.
Comments (0)