Integrated multi-omics analysis and machine learning refine molecular subtypes and prognosis in hepatocellular carcinoma through O-linked glycosylation genes

22 Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The Sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28:882–883. https://doi.org/10.1093/bioinformatics/bts034

Article  PubMed  PubMed Central  CAS  Google Scholar 

31 Boyault S et al (2007) Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45:42–52. https://doi.org/10.1002/hep.21467

Article  PubMed  CAS  Google Scholar 

32 Chiang DY et al (2008) Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 68:6779–6788. https://doi.org/10.1158/0008-5472.Can-08-0742

Article  PubMed  PubMed Central  CAS  Google Scholar 

33 Hoshida Y et al (2009) Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 69:7385–7392. https://doi.org/10.1158/0008-5472.Can-09-1089

Article  PubMed  PubMed Central  CAS  Google Scholar 

50 Lin S, Cao Y, Zhu K, Yang C, Zhu X, Zhang H et al (2023) Identification of a novel prognostic signature based on N-Linked glycosylation and its correlation with immunotherapy response in hepatocellular carcinoma. J Hepatocell Carcinoma 10:1749–1765

PubMed  PubMed Central  CAS  Google Scholar 

58, de Visser KE, Joyce JA (2023) The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41:374–403. https://doi.org/10.1016/j.ccell.2023.02.016

Article  CAS  Google Scholar 

Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W (2018) CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 18:635–647. https://doi.org/10.1038/s41577-018-0044-0

Article  PubMed  CAS  Google Scholar 

Chakraborty E, Sarkar D (2022) Emerging therapies for hepatocellular carcinoma (HCC). Cancers (Basel) 14. https://doi.org/10.3390/cancers14112798

Chen D et al (2022) Integrated machine learning and bioinformatic analyses constructed a novel Stemness-Related classifier to predict prognosis and immunotherapy responses for hepatocellular carcinoma patients. Int J Biol Sci 18:360–373. https://doi.org/10.7150/ijbs.66913

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen C, Wang Z, Ding Y, Qin Y (2023) Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol 14:1133308. https://doi.org/10.3389/fimmu.2023.1133308

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cheng Z et al (2023) Lactylation-Related gene signature effectively predicts prognosis and treatment responsiveness in hepatocellular carcinoma. Pharmaceuticals (Basel) 16. https://doi.org/10.3390/ph16050644

Chu G, Ji X, Wang Y, Niu H (2023) Integrated multiomics analysis and machine learning refine molecular subtypes and prognosis for muscle-invasive urothelial cancer. Mol Ther Nucleic Acids 33:110–126. https://doi.org/10.1016/j.omtn.2023.06.001

Article  PubMed  PubMed Central  CAS  Google Scholar 

Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma (2017) Cell 169:1327–1341e1323. https://doi.org/10.1016/j.cell.2017.05.046

Article  CAS  Google Scholar 

Deo RC (2015) Machine learning in medicine. Circulation 132:1920–1930. https://doi.org/10.1161/circulationaha.115.001593

Article  PubMed  PubMed Central  Google Scholar 

Finn RS et al (2020) Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 382:1894–1905. https://doi.org/10.1056/NEJMoa1915745

Article  PubMed  CAS  Google Scholar 

Gao J et al (2020) Synaptopodin-2 promotes hepatocellular carcinoma metastasis via calcineurin-induced nuclear-cytoplasmic translocation. Cancer Lett 482:8–18. https://doi.org/10.1016/j.canlet.2020.04.005

Article  PubMed  CAS  Google Scholar 

Geeleher P, Cox N, Huang RS (2014) pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE 9:e107468. https://doi.org/10.1371/journal.pone.0107468

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gu C et al (2019) Glycosylation and an amino acid insertion in the head of hemagglutinin independently affect the antigenic properties of H5N1 avian influenza viruses. Sci China Life Sci 62:76–83. https://doi.org/10.1007/s11427-018-9439-0

Article  PubMed  CAS  Google Scholar 

Harkus U, Wankell M, Palamuthusingam P, McFarlane C, Hebbard L (2022) Immune checkpoint inhibitors in HCC: cellular, molecular and systemic data. Semin Cancer Biol 86:799–815. https://doi.org/10.1016/j.semcancer.2022.01.005

Article  PubMed  CAS  Google Scholar 

Hoshida Y (2010) Nearest template prediction: a single-sample-based flexible class prediction with confidence assessment. PLoS ONE 5:e15543. https://doi.org/10.1371/journal.pone.0015543

Article  PubMed  PubMed Central  CAS  Google Scholar 

Huo J, Cai J, Guan G, Liu H, Wu LA (2021) Ferroptosis and pyroptosis molecular Subtype-Related signature applicable for prognosis and immune microenvironment Estimation in hepatocellular carcinoma. Front Cell Dev Biol 9:761839. https://doi.org/10.3389/fcell.2021.761839

Article  PubMed  PubMed Central  Google Scholar 

Jin S et al (2021) Inference and analysis of cell-cell communication using cellchat. Nat Commun 12:1088. https://doi.org/10.1038/s41467-021-21246-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kannan J, Mathews L, Wu Z, Young NS, Gao S (2022) CAISC: A software to integrate copy number variations and single nucleotide mutations for genetic heterogeneity profiling and subclone detection by single-cell RNA sequencing. BMC Bioinformatics 23:98. https://doi.org/10.1186/s12859-022-04625-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kenyon C, Buyze J, Colebunders R (2014) Classification of incidence and prevalence of certain sexually transmitted infections by world regions. Int J Infect Dis 18:73–80. https://doi.org/10.1016/j.ijid.2013.09.014

Article  PubMed  CAS  Google Scholar 

Kickingereder P et al (2016) Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying Anti-Angiogenic treatment response. Clin Cancer Res 22:5765–5771. https://doi.org/10.1158/1078-0432.Ccr-16-0702

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kunnimalaiyaan S, Sokolowski KM, Balamurugan M, Gamblin TC, Kunnimalaiyaan M (2015) Xanthohumol inhibits Notch signaling and induces apoptosis in hepatocellular carcinoma. PLoS ONE 10:e0127464. https://doi.org/10.1371/journal.pone.0127464

Article  PubMed  PubMed Central  CAS  Google Scholar 

Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. https://doi.org/10.1186/1471-2105-9-559

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee JS et al (2004) Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 40:667–676. https://doi.org/10.1002/hep.20375

Article  PubMed  CAS  Google Scholar 

Lee JM, Hammarén HM, Savitski MM, Baek SH (2023) Control of protein stability by post-translational modifications. Nat Commun 14:201. https://doi.org/10.1038/s41467-023-35795-8

Article 

Comments (0)

No login
gif