Multiplex CRISPR-Cas9 editing of chlorophyll biosynthesis genes in chickpea via protoplast and -mediated transformation

Abdelrahman M, Wei Z, Rohila JS, Zhao K (2021) Multiplex Genome-Editing technologies for revolutionizing plant biology and crop improvement. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.721203

Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320–2325. https://doi.org/10.1038/nprot.2006.384

Article  CAS  PubMed  Google Scholar 

Badhan S, Ball AS, Mantri N (2021) First report of CRISPR/Cas9 mediated DNA-Free editing of 4CL and RVE7 genes in Chickpea protoplasts. Int J Mol Sci 22:396. https://doi.org/10.3390/ijms22010396

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao A, Zhang C, Huang Y, Chen H, Zhou X, Cao D (2020) Genome editing technology and application in soybean improvement. Oil Crop Sci 5:31–40. https://doi.org/10.1016/j.ocsci.2020.03.001

Article  Google Scholar 

Begemann MB, Gray BN, January E, Gordon GC, He Y, Liu H, Wu X, Brutnell TP, Mockler TC, Oufattole M (2017) Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep 7:11606. https://doi.org/10.1038/s41598-017-11760-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beying N, Schmidt C, Pacher M, Houben A, Puchta H (2020) CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nat Plants 6:638–645. https://doi.org/10.1038/s41477-020-0663-x

Article  CAS  PubMed  Google Scholar 

Bhowmik P, Konkin D, Polowick P, Hodgins CL, Subedi M, Xiang D, Yu B, Patterson N, Rajagopalan N, Babic V, Ro D, Tar’an B, Bandara M, Smyth SJ, Cui Y, Kagale S (2021) CRISPR/Cas9 gene editing in legume crops: opportunities and challenges. Legume Sci 3. https://doi.org/10.1002/leg3.96

Biswas S, Bridgeland A, Irum S, Thomson MJ, Septiningsih EM (2022a) Optimization of prime editing in rice, peanut, chickpea, and Cowpea protoplasts by restoration of GFP activity. Int J Mol Sci 23:9809. https://doi.org/10.3390/ijms23179809

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biswas S, Wahl NJ, Thomson MJ, Cason JM, McCutchen BF, Septiningsih EM (2022b) Optimization of Protoplast Isolation and Transformation for a Pilot Study of Genome Editing in Peanut by Targeting the Allergen Gene Ara h 2. IJMS 23, 837. https://doi.org/10.3390/ijms23020837

Brandt KM, Gunn H, Moretti N, Zemetra RS (2020) A streamlined protocol for wheat (Triticum aestivum) protoplast isolation and transformation with CRISPR-Cas ribonucleoprotein complexes. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.00769

Caddell D, Langenfeld NJ, Eckels MJH, Zhen S, Klaras R, Mishra L, Bugbee B, Coleman-Derr D (2023) Photosynthesis in rice is increased by CRISPR/Cas9-mediated transformation of two truncated light-harvesting antenna. Front Plant Sci 14. https://doi.org/10.3389/fpls.2023.1050483

Campbell BW, Mani D, Curtin SJ, Slattery RA, Michno J-M, Ort DR, Schaus PJ, Palmer RG, Orf JH, Stupar RM (2014) Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. G3(Bethesda):123–131. https://doi.org/10.1534/g3.114.015255

Čermák T, Curtin SJ, Gil-Humanes J, Čegan R, Kono TJY, Konečná E, Belanto JJ, Starker CG, Mathre JW, Greenstein RL, Voytas DF (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217. https://doi.org/10.1105/tpc.16.00922

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chatterjee A, Kundu S (2015) Revisiting the chlorophyll biosynthesis pathway using genome scale metabolic model of Oryza sativa Japonica. Sci Rep 5:14975. https://doi.org/10.1038/srep14975

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Lu X, Shu N, Wang S, Wang J, Wang D, Guo L, Ye W (2017) Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep 7:44304. https://doi.org/10.1038/srep44304

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202. https://doi.org/10.1016/j.molp.2020.06.009

Article  CAS  PubMed  Google Scholar 

Cheng N, Nakata PA (2020) Development of a rapid and efficient protoplast isolation and transfection method for Chickpea (Cicer arietinum). MethodsX 7:101025. https://doi.org/10.1016/j.mex.2020.101025

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conant D, Hsiau T, Rossi N, Oki J, Maures T, Waite K, Yang J, Joshi S, Kelso R, Holden K, Enzmann BL, Stoner R (2022a) Inference of CRISPR edits from Sanger trace data. CRISPR J 5:123–130. https://doi.org/10.1089/crispr.2021.0113

Article  CAS  PubMed  Google Scholar 

Connelly JP, Pruett-Miller SM (2019) CRIS.py: A versatile and High-throughput analysis program for CRISPR-based genome editing. Sci Rep 9:4194. https://doi.org/10.1038/s41598-019-40896-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das Bhowmik SS, Cheng AY, Long H, Tan GZH, Hoang TML, Karbaschi MR, Williams B, Higgins TJV, Mundree SG (2019) Robust genetic transformation system to obtain non-chimeric Transgenic Chickpea. Front Plant Sci 10:524. https://doi.org/10.3389/fpls.2019.00524

Article  PubMed  PubMed Central  Google Scholar 

Datta A (2013) Agric Food Secur 2:15. https://doi.org/10.1186/2048-7010-2-15. Genetic engineering for improving quality and productivity of crops

Ding D, Chen K, Chen Y, Li H, Xie K (2018) Engineering introns to express RNA guides for Cas9- and Cpf1-Mediated multiplex genome editing. Mol Plant 11:542–552. https://doi.org/10.1016/j.molp.2018.02.005

Article  CAS  PubMed  Google Scholar 

Eid A, Mohan C, Sanchez S, Wang D, Altpeter F, Multiallelic (2021) Targeted mutagenesis of magnesium chelatase with CRISPR/Cas9 provides a rapidly scorable phenotype in highly polyploid sugarcane. Front Genome Editing 3. https://doi.org/10.3389/fgeed.2021.654996

Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217. https://doi.org/10.1038/srep12217

Article  CAS  PubMed  PubMed Central  Google Scholar 

FAOSTAT (2020) URL https://www.fao.org/faostat/en/home (accessed 1.24.23)

Gao W, Long L, Tian X, Xu F, Liu J, Singh PK, Botella JR, Song C (2017) Genome editing in cotton with the CRISPR/Cas9 system. Frontiers in Plant Science 8. https://doi.org/10.3389/fpls.2017.01364

Ge SX, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36:2628–2629. https://doi.org/10.1093/bioinformatics/btz931

Article  CAS  PubMed  Google Scholar 

Gupta SK, Vishwakarma NK, Malakar P, Vanspati P, Sharma NK, Chattopadhyay D (2023) Development of an Agrobacterium-delivered codon-optimized CRISPR/Cas9 system for Chickpea genome editing. Protoplasma 260:1437–1451. https://doi.org/10.1007/s00709-023-01856-4

Article  CAS  PubMed  Google Scholar 

Hooghvorst I, López-Cristoffanini C, Nogués S (2019) Efficient knockout of phytoene desaturase gene using CRISPR/Cas9 in melon. Sci Rep 9:17077. https://doi.org/10.1038/s41598-019-53710-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang T-K, Puchta H (2019) CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination. Plant Cell Rep 38:443–453. https://doi.org/10.1007/s00299-019-02379-0

Article  CAS  PubMed  Google Scholar 

Jukanti AK, Gaur PM, Gowda CLL, Chibbar RN (2012) Nutritional quality and health benefits of Chickpea (Cicer arietinum L.): a review. Br J Nutr 108(Suppl 1):S11–26. https://doi.org/10.1017/S0007114512000797

Article  CAS  PubMed  Google Scholar 

Jung YJ, Lee HJ, Yu J, Bae S, Cho Y-G, Kang KK (2021) Transcriptomic and physiological analysis of OsCAO1 knockout lines using the CRISPR/Cas9 system in rice. Plant Cell Rep 40:1013–1024. https://doi.org/10.1007/s00299-020-02607-y

Article  CAS  PubMed  Google Scholar 

Labun K, Montague TG, Krause M, Cleuren T, Tjeldnes YN, Valen H, E (2019) CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res 47:W171–W174. https://doi.org/10.1093/nar/gkz365

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X (2011) A transient expression assay using Arabidopsis mesophyll protoplasts. https://doi.org/10.21769/BioProtoc.70. BIO-PROTOCOL 1

Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691. https://doi.org/10.1038/nbt.2654

Article  CAS  PubMed  PubMed Central

Comments (0)

No login
gif