Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309(5737):1052–1056. https://doi.org/10.1126/science.1115983
Article CAS PubMed Google Scholar
An H, Roussot C, Suárez-López P, Corbesier L, Vincent C, Piñeiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131(15):3615–3626. https://doi.org/10.1242/dev.01231
Article CAS PubMed Google Scholar
Bao S, Hua C, Shen L, Yu H (2020) New insights into gibberellin signaling in regulating flowering in Arabidopsis. J Integr Plant Biol 62(1):118–131. https://doi.org/10.1111/jipb.12892
Article CAS PubMed Google Scholar
Chen Q, Payyavula RS, Chen L, Zhang J, Zhang C, Turgeon R (2018) FLOWERING LOCUS T mRNA is synthesized in specialized companion cells in Arabidopsis and Maryland Mammoth tobacco leaf veins. Proc Natl Acad Sci USA 115(11):2830–2835. https://doi.org/10.1073/pnas.1719455115
Article CAS PubMed PubMed Central Google Scholar
Chen H, Wang T, He X, Cai X, Lin R, Liang J, Wu J, King G, Wang X (2022) BRAD V3.0: an upgraded Brassicaceae database. Nucleic Acids Res 50(D1):D1432–D1441. https://doi.org/10.1093/nar/gkab1057
Article CAS PubMed Google Scholar
Chou KC, Shen HB (2010) Plant-mPloc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5(6):e11335. https://doi.org/10.1371/journal.pone.0011335
Article CAS PubMed PubMed Central Google Scholar
Clough SJ, Bent AF (1998) Floral dip: a simplified method for -mediated transformation of. Plant J 16(6):735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
Dai Y, Zhang S, Guan J, Wang S, Zhang H, Li G, Sun R, Li F, Zhang S (2024) Single-cell transcriptomic analysis of flowering regulation and vernalization in Chinese cabbage shoot apex. Hortic Res 11(10):uhae214. https://doi.org/10.1093/hr/uhae214
Article CAS PubMed PubMed Central Google Scholar
Del Olmo I, Poza-Viejo L, Pineiro M, Jarillo JA, Crevillen P (2019) High ambient temperature leads to reduced FT expression and delayed flowering in Brassica rapa via a mechanism associated with H2A.Z dynamics. Plant J 100:343–356
Deng W, Ying H, Helliwell CA, Taylor JM, Peacock WJ, Dennis ES (2011) FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc Natl Acad Sci USA 108(16):6680–6685. https://doi.org/10.1073/pnas.1103175108
Duan W, Zhang H, Zhang B, Wu X, Shao S, Li Y, Hou X, Liu T (2017) Role of vernalization-mediated demethylation in the floral transition of Brassica rapa. Planta 245(1):227–233. https://doi.org/10.1007/s00425-016-2622-3
Article CAS PubMed Google Scholar
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15(10):573-581. https://doi.org/10.1016/j.tplants.2010.06.005
Franks SJ, Perez-Sweeney B, Strahl M, Nowogrodzki A, Weber JJ, Lalchan R, Jordan KP, Litt A (2015) Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa. Peer J 3:e1339
PubMed PubMed Central Google Scholar
Freytes SN, Canelo M, Cerdán PD (2021) Regulation of flowering time: when and where? Curr Opin Plant Biol 63:102049. https://doi.org/10.1016/j.pbi.2021.102049
Article CAS PubMed Google Scholar
Fu W, Huang S, Gao Y, Zhang M, Qu G, Wang N, Liu Z, Feng H (2020) Role of BrSDG8 on bolting in Chinese cabbage (Brassica rapa). Theor Appl Genet 133(10):2937–2948. https://doi.org/10.1007/s00122-020-03647-4
Article CAS PubMed Google Scholar
Guo X, Liang J, Lin R, Zhang L, Zhang Z, Wu J, Wang X (2022) Single-cell transcriptome reveals differentiation between adaxial and abaxial mesophyll cells in Brassica rapa. Plant Biotechnol J 20(12):2233–2235. https://doi.org/10.1111/pbi.13919
Article CAS PubMed PubMed Central Google Scholar
Hong L, Niu F, Lin Y, Wang S, Chen L, Jiang L (2021) MYB106 is a negative regulator and a substrate for CRL3BPM E3 ligase in regulating flowering time in Arabidopsis thaliana. J Integr Plant Biol 63(6):1104–1119. https://doi.org/10.1111/jipb.13071
Article CAS PubMed Google Scholar
Hu T, Li X, Du L, Manuela D, Xu M (2023) LEAFY and APETALA1 down-regulate ZINC FINGER PROTEIN 1 and 8 to release their repression on class B and C floral homeotic genes. Proc Natl Acad Sci USA 120(22):e2221181120. https://doi.org/10.1073/pnas.2221181120
Article CAS PubMed PubMed Central Google Scholar
Hu H, Tian S, Xie G, Liu R, Wang N, Li S, He Y, Du J (2021) TEM1 combinatorially binds to FLOWERING LOCUS T and recruits a polycomb factor to repress the floral transition in Arabidopsis. Proc Natl Acad Sci USA 118(35). https://doi.org/10.1073/pnas.2103895118
Huang F, Liu T, Hou X (2018) Isolation and functional characterization of a floral repressor, BcMAF1, from pak-choi (Brassica rapa ssp. Chinensis). Front Plant Sci 9:290. https://doi.org/10.3389/fpls.2018.00290
Huang S, Gao Y, Xue M, Xu J, Liao R, Shang S, Yang X, Zhao Y, Li C, Liu Z, Feng H (2022) BrKAO2 mutations disrupt leafy head formation in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor Appl Genet 135(7):2453–2468. https://doi.org/10.1007/s00122-022-04126-8
Jiang M, Zhang Y, Yang X, Li X, Lang H (2023) Brassica rapa orphan gene BR1 delays flowering time in Arabidopsis. Front Plant Sci 14:1135684. https://doi.org/10.3389/fpls.2023.1135684
Article PubMed PubMed Central Google Scholar
Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146(2):623–635. https://doi.org/10.1104/pp.107.110981
Article CAS PubMed PubMed Central Google Scholar
Kim JA, Shim D, Kumari S, Jung H-E, Jung K-H, Jeong H, Kim WY, Lee SI, Jeong MJ (2019) Transcriptome analysis of diurnal gene expression in Chinese cabbage. Genes. https://doi.org/10.3390/genes10020130
Article PubMed PubMed Central Google Scholar
Kuno N, Moller SG, Shinomura T, Xu X, Chua NH, Furuya M (2003) The novel MYB protein EARLY-PHYTOCHROME-RESPONSIVE1 is a component of a slave circadian oscillator in Arabidopsis. Plant Cell 15(10):2476–2488. https://doi.org/10.1105/tpc.014217
Article CAS PubMed PubMed Central Google Scholar
Lee C, Kim SJ, Jin S, Susila H, Youn G, Nasim Z, Alavilli H, Chung KS, Yoo SJ, Ahn JH (2019) Genetic interactions reveal the antagonistic roles of FT/TSF and TFL1 in the determination of inflorescence meristem identity in Arabidopsis. Plant J 99(3):452–464. https://doi.org/10.1111/tpj.14335
Letunic I, Khedkar S, Bork P (2021) SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 49(D1):D458–D460. https://doi.org/10.1093/nar/gkaa937
Article CAS PubMed Google Scholar
Li J, Sun B, Xu Q, Jiang L, Wang N (2024a) Transcriptome-level analysis of gene expressions in different tissues of tomato and key gene identifications during seed germination. Sci Hortic 337:113565. https://doi.org/10.1016/j.scienta.2024.113565
Li N, Yang R, Shen S, Zhao J (2024b) Molecular mechanism of flowering time regulation in Brassica rapa: similarities and differences with Arabidopsis. Hortic Plant J 10(3):615–628. https://doi.org/10.1016/j.hpj.2023.05.020
Liu L, Zhang J, Adrian J, Gissot L, Coupland G, Yu D, Turck F (2014) Elevated levels of MYB30 in the phloem accelerate flowering in Arabidopsis through the regulation of FLOWERING LOCUS T. PLoS ONE 9(2):e89799. https://doi.org/10.1371/journal.pone.0089799
Article CAS PubMed PubMed Central Google Scholar
Maple R, Zhu P, Hepworth J, Wang JW, Dean C (2024) Flowering time: from physiology, through genetics to mechanism. Plant Physiol 195(1):190–212. https://doi.org/10.1093/plphys/kiae109
Article CAS PubMed PubMed Central Google Scholar
Niu F, Rehmani MS, Yan J (2024) Multilayered regulation and implication of flowering time in plants. Plant Physiol Biochem 213:108842. https://doi.org/10.1016/j.plaphy.2024.108842
Article CAS PubMed Google Scholar
Qi Y, Shao W, Chen H, Ahmed T, Zhao X, Wang Y, Zhu L, Sun S, Kuang H, An G (2025) LsKN1 and LsOFP6 synergistically regulate the bolting time by modulating the gibberellin pathway in lettuce. New Phytol 246(3):1049–1065.
Comments (0)