Cytosine base editor-mediated high-efficiency myostatin editing in Hu sheep

Abeuova L, Kali B, Tussipkan D, Akhmetollayeva A, Ramankulov Y, Manabayeva S (2023) CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis in the potato. Transgenic Res 32(5):383–397. https://doi.org/10.1007/s11248-023-00356-8

Article  CAS  PubMed  Google Scholar 

Abulaiti A, Maimaiti A, Yiming N, Fu Q, Li S, Li Y, Wang Y, Zhou Q (2023) Molecular subtypes based on PANoptosis-related genes and tumor microenvironment infiltration characteristics in lower-grade glioma. Funct Integr Genomics 17(2):84. https://doi.org/10.1007/s10142-023-01003-5

Article  CAS  Google Scholar 

Bataille S, Chauveau P, Fouque D, Aparicio M, Koppe L (2021) Myostatin and muscle atrophy during chronic kidney disease. Nephrol Dial Transpl 36(11):1986–1993. https://doi.org/10.1093/ndt/gfaa129

Article  CAS  Google Scholar 

Boman IA, Vage DI (2009) An insertion in the coding region of the myostatin (MSTN) gene affects carcass conformation and fatness in the Norwegian Spaelsau (Ovis aries). BMC Res Notes 2:98. https://doi.org/10.1186/1756-0500-2-98

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boman IA, Klemetsdal G, Blichfeldt T, Nafstad O, Vage DI (2009) A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian white sheep (Ovis aries). Anim Genet 40(4):418–422. https://doi.org/10.1111/j.1365-2052.2009.01855.x

Article  CAS  PubMed  Google Scholar 

Boman IA, Klemetsdal G, Nafstad O, Blichfeldt T, Vage DI (2011) Selection based on progeny testing induces rapid changes in myostatin allele frequencies - a case study in sheep. J Anim Breed Genet 128(1):52–55. https://doi.org/10.1111/j.1439-0388.2010.00879.x

Article  CAS  PubMed  Google Scholar 

Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006) A mutation creating a potential illegitimate MicroRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38(7):813–818. https://doi.org/10.1038/ng1810

Article  CAS  PubMed  Google Scholar 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using crispr/cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-Neto PC, Nguyen TH, Creneguy A, Brusselle L, Anegon I, Menchaca A (2015) Efficient generation of myostatin Knock-Out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS ONE 10(8):e0136690. https://doi.org/10.1371/journal.pone.0136690

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davies CJ, Fan Z, Morgado KP, Liu Y, Regouski M, Meng Q, Thomas AJ, Yun SI, Song BH, Frank JC, Perisse IV, Van Wettere A, Lee YM, Polejaeva IA (2022) Development and characterization of type I interferon receptor knockout sheep: A model for viral immunology and reproductive signaling. Front Genet 13:986316. https://doi.org/10.3389/fgene.2022.986316

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding Q, Cui Z, Shi Q, Zhang Y, He N, Guo R, Tian Y, Cao S, Zhong J, Wang H (2025) An advanced cytosine base editor enabled the generation of cattle with a stop codon in the β-lactoglobulin gene. Transgenic Res 14(1). https://doi.org/10.1007/s11248-025-00435-y

Du Y, Liu Y, Hu J, Peng X, Liu Z (2023) CRISPR/Cas9 systems: delivery technologies and biomedical applications. Asian J Pharm Sci 18(6):100854. https://doi.org/10.1016/j.ajps.2023.100854

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dyke E, Bijnagte-Schoenmaker C, Wu KM, Oudakker A, Roepman R, Nadif Kasri N (2023) Generation of induced pluripotent stem cell line carrying frameshift variants in NPHP1 (UCSFi001-A-68) using CRISPR/Cas9. Stem Cell Res 68:103053. https://doi.org/10.1016/j.scr.2023.103053

Article  CAS  PubMed  Google Scholar 

Elsharawy H, Refat M (2023) CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review. Funct Integr Genomics 23(3):265. https://doi.org/10.1007/s10142-023-01190-1

Article  CAS  PubMed  Google Scholar 

Fan Z, Perisse IV, Cotton CU, Regouski M, Meng Q, Domb C, Van Wettere AJ, Wang Z, Harris A, White KL, Polejaeva IA (2018) A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight 3(19). https://doi.org/10.1172/jci.insight.123529

Fan Z, Liu Z, Xu K, Wu T, Ruan J, Zheng X, Bao S, Mu Y, Sonstegard T, Li K (2022) Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production. Sci China Life Sci 65(2):362–375. https://doi.org/10.1007/s11427-020-1927-9

Article  CAS  PubMed  Google Scholar 

Freking BA, Leymaster KA (2006) Evaluation of the ovine Callipyge locus: IV. Genotypic effects on reproductive traits. J Anim Sci 84(2):311–316. https://doi.org/10.2527/2006.842311x

Article  CAS  PubMed  Google Scholar 

Gao F, Kishida T, Ejima A, Gojo S, Mazda O (2013) Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells. Biochem Biophys Res Commun 431(2):309–314. https://doi.org/10.1016/j.bbrc.2012.12.105

Article  CAS  PubMed  Google Scholar 

Gill JL, Bishop SC, McCorquodale C, Williams JL, Wiener P (2009) Associations between the 11-bp deletion in the myostatin gene and carcass quality in Angus-sired cattle. Anim Genet 40(1):97–100. https://doi.org/10.1111/j.1365-2052.2008.01790.x

Article  CAS  PubMed  Google Scholar 

Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17(1):71–74. https://doi.org/10.1038/ng0997-71

Article  CAS  PubMed  Google Scholar 

Grobet L, Poncelet D, Royo LJ, Brouwers B, Pirottin D, Michaux C, Menissier F, Zanotti M, Dunner S, Georges M (1998) Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm Genome 9(3):210–213. https://doi.org/10.1007/s003359900727

Article  CAS  PubMed  Google Scholar 

Guo R, Wan Y, Xu D, Cui L, Deng M, Zhang G, Jia R, Zhou W, Wang Z, Deng K, Huang M, Wang F, Zhang Y (2016) Generation and evaluation of myostatin knock-out rabbits and goats using CRISPR/Cas9 system. Sci Rep 6:29855. https://doi.org/10.1038/srep29855

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo R, Wang H, Meng C, Gui H, Li Y, Chen F, Zhang C, Zhang H, Ding Q, Zhang J, Zhang J, Qian Y, Zhong J, Cao S (2023) Efficient and specific generation of MSTN-Edited Hu sheep using C-CRISPR. Genes (Basel) 14(6). https://doi.org/10.3390/genes14061216

Hao F, Yan W, Li X, Wang H, Wang Y, Hu X, Liu X, Liang H, Liu D (2018) Generation of cashmere goats carrying an EDAR gene mutant using CRISPR-Cas9-Mediated genome editing. Int J Biol Sci 14(4):427–436. https://doi.org/10.7150/ijbs.23890

Article  CAS  PubMed  PubMed Central  Google Scholar 

He Z, Zhang T, Jiang L, Zhou M, Wu D, Mei J, Cheng Y (2018) Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats. Biosci Rep 38(6). https://doi.org/10.1042/BSR20180742

Hoxhaj G, Manning BD (2020) The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 20(2):74–88. https://doi.org/10.1038/s41568-019-0216-7

Article  CAS  PubMed  Google Scholar 

Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huszar K, Welker Z, Gyorgypal Z, Toth E, Ligeti Z, Kulcsar PI, Dancso J, Talas A, Krausz SL, Varga E, Welker E (2023) Position-dependent sequence motif preferences of SpCas9 are largely determined by scaffold-complementary spacer motifs. Nucleic Acids Res 51(11):5847–5863. https://doi.org/10.1093/nar/gkad323

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iyer V, Shen B, Zhang W, Hodgkins A, Keane T, Huang X, Skarnes WC (2015) Off-target mutations are rare in Cas9-modified mice. Nat Methods 12(6):479. https://doi.org/10.1038/nmeth.3408

Article  CAS 

Comments (0)

No login
gif