Liu P, Quinn RR, Lam NN, Elliott MJ, Xu Y, James MT, et al. Accounting for age in the definition of chronic kidney disease. JAMA Intern Med. 2021;181(10):1359–66.
North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res. 2012;110(8):1097–108.
CAS PubMed Central Google Scholar
Zhou XJ, Rakheja D, Yu X, Saxena R, Vaziri ND, Silva FG. The aging kidney. Kidney Int. 2008;74(6):710–20.
Fang Y, Gong AY, Haller ST, Dworkin LD, Liu Z, Gong R. The ageing kidney: molecular mechanisms and clinical implications. Ageing Res Rev. 2020;63101151.
Yamamoto T, Isaka Y. Pathological mechanisms of kidney disease in ageing. Nat Rev Nephrol. 2024;1–13.
Marquez-Exposito L, Tejedor-Santamaria L, Valentijn FA, Tejera-Muñoz A, Rayego-Mateos S, Marchant V, et al. Oxidative stress and cellular senescence are involved in the aging kidney. Antioxidants. 2022;11(2):301.
CAS PubMed Central Google Scholar
Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68. https://doi.org/10.1371/journal.pbio.0060301.
Docherty M-H, O’Sullivan ED, Bonventre JV, Ferenbach DA. Cellular senescence in the kidney. J Am Soc Nephrol. 2019;30(5):726–36.
CAS PubMed Central Google Scholar
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://doi.org/10.1016/j.cell.2013.05.039.
Article CAS PubMed Central Google Scholar
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186(2):243–78. https://doi.org/10.1016/j.cell.2022.11.001.
Andrieux P, Chevillard C, Cunha-Neto E, Nunes JPS. Mitochondria as a cellular hub in infection and inflammation. Int J Mol Sci. 2021;22(21):11338.
CAS PubMed Central Google Scholar
Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016;23(2):303–14. https://doi.org/10.1016/j.cmet.2015.11.011.
Fontecha-Barriuso M, Lopez-Diaz AM, Guerrero-Mauvecin J, Miguel V, Ramos AM, Sanchez-Niño MD, et al. Tubular mitochondrial dysfunction, oxidative stress, and progression of chronic kidney disease. Antioxidants. 2022;11(7):1356.
CAS PubMed Central Google Scholar
Imig JD. Prospective for cytochrome P450 epoxygenase cardiovascular and renal therapeutics. Pharmacol Ther. 2018;1921–19. https://doi.org/10.1016/j.pharmthera.2018.06.015.
Kim J, Imig JD, Yang J, Hammock BD, Padanilam BJ. Inhibition of soluble epoxide hydrolase prevents renal interstitial fibrosis and inflammation. Am J Physiol Renal Physiol. 2014;307(8):F971–80. https://doi.org/10.1152/ajprenal.00256.2014.
Article CAS PubMed Central Google Scholar
Kim J, Yoon SP, Toews ML, Imig JD, Hwang SH, Hammock BD, et al. Pharmacological inhibition of soluble epoxide hydrolase prevents renal interstitial fibrogenesis in obstructive nephropathy. Am J Physiol Renal Physiol. 2015;308(2):F131–9. https://doi.org/10.1152/ajprenal.00531.2014.
Morisseau C, Hammock BD. Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol. 2013;5337–58. https://doi.org/10.1146/annurev-pharmtox-011112-140244.
Jamieson KL, Keshavarz-Bahaghighat H, Darwesh AM, Sosnowski DK, Seubert JM. Age and sex differences in hearts of soluble epoxide hydrolase null mice. Front Physiol. 2020;1148. https://doi.org/10.3389/fphys.2020.00048.
Yousef A, Sosnowski DK, Fang L, Legaspi RJ, Korodimas J, Lee A, et al. Cardioprotective response and senescence in aged sEH null female mice exposed to LPS. Am J Physiol Heart Circ Physiol. 2024;326(6):H1366–85. https://doi.org/10.1152/ajpheart.00706.2023.
Nelson JW, Young JM, Borkar RN, Woltjer RL, Quinn JF, Silbert LC, et al. Role of soluble epoxide hydrolase in age-related vascular cognitive decline. Prostaglandins Other Lipid Mediat. 2014;113–11530–7. https://doi.org/10.1016/j.prostaglandins.2014.09.003.
Wang W, Wagner KM, Wang Y, Singh N, Yang J, He Q, et al. Soluble epoxide hydrolase contributes to cell senescence and ER stress in aging mice colon. Int J Mol Sci. 2023;24(5). https://doi.org/10.3390/ijms24054570.
Wu Y, Dong J-H, Dai Y-F, Zhu M-Z, Wang M-Y, Zhang Y, et al. Hepatic soluble epoxide hydrolase activity regulates cerebral Aβ metabolism and the pathogenesis of Alzheimer’s disease in mice. 2023.
Jamieson KL, Darwesh AM, Sosnowski DK, Zhang H, Shah S, Zhabyeyev P, et al. Soluble epoxide hydrolase in aged female mice and human explanted hearts following ischemic injury. Int J Mol Sci. 2021;22(4). https://doi.org/10.3390/ijms22041691.
McReynolds C, Morisseau C, Wagner K, Hammock B. Epoxy fatty acids are promising targets for treatment of pain, cardiovascular disease and other indications characterized by mitochondrial dysfunction, endoplasmic stress and inflammation. Adv Exp Med Biol. 2020;127471–99. https://doi.org/10.1007/978-3-030-50621-6_5.
Zuloaga KL, Zhang W, Roese NE, Alkayed NJJFiP. Soluble epoxide hydrolase gene deletion improves blood flow and reduces infarct size after cerebral ischemia in reproductively senescent female mice. 2015;5290.
Bettaieb A, Koike S, Chahed S, Zhao Y, Bachaalany S, Hashoush N, et al. Podocyte-specific soluble epoxide hydrolase deficiency in mice attenuates acute kidney injury. FEBS J. 2017;284(13):1970–86. https://doi.org/10.1111/febs.14100.
Article CAS PubMed Central Google Scholar
Loch D, Hoey A, Morisseau C, Hammock BO, Brown L. Prevention of hypertension in DOCA-salt rats by an inhibitor of soluble epoxide hydrolase. Cell Biochem Biophys. 2007;47(1):87–98. https://doi.org/10.1385/cbb:47:1:87.
Article CAS PubMed Central Google Scholar
Jiang XS, Xiang XY, Chen XM, He JL, Liu T, Gan H, et al. Inhibition of soluble epoxide hydrolase attenuates renal tubular mitochondrial dysfunction and ER stress by restoring autophagic flux in diabetic nephropathy. Cell Death Dis. 2020;11(5):385. https://doi.org/10.1038/s41419-020-2594-x.
Elmarakby AA, Faulkner J, Al-Shabrawey M, Wang MH, Maddipati KR, Imig JD. Deletion of soluble epoxide hydrolase gene improves renal endothelial function and reduces renal inflammation and injury in streptozotocin-induced type 1 diabetes. Am J Physiol Regul Integr Comp Physiol. 2011;301(5):R1307–17. https://doi.org/10.1152/ajpregu.00759.2010.
Article CAS PubMed Central Google Scholar
Flurkey KM, Currer J, Harrison DE. Chapter 20 - Mouse models in aging research. In: Fox JG, Davisson MT, Quimby FW, Barthold SW, Newcomer CE, Smith AL, editors. The mouse in biomedical research. 2nd ed. Burlington: Academic Press; 2007. pp. 637–72.
Sinal CJ, Miyata M, Tohkin M, Nagata K, Bend JR, Gonzalez FJ. Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. J Biol Chem. 2000;275(51):40504–10. https://doi.org/10.1074/jbc.M008106200.
Olfert ED, Cross BM, McWilliam AA. Guide to the care and use of experimental animals: Citeseer. 1993.
Sosnowski DK, Jamieson KL, Gruzdev A, Li Y, Valencia R, Yousef A, et al. Cardiomyocyte-specific disruption of soluble epoxide hydrolase limits inflammation to preserve cardiac function. Am J Physiol Heart Circ Physiol. 2022;323(4):H670–87. https://doi.org/10.1152/ajpheart.00217.2022.
Article CAS PubMed Central Google Scholar
Whitehead JC, Hildebrand BA, Sun M, Rockwood MR, Rose RA, Rockwood K, et al. A clinical frailty index in aging mice: comparisons with frailty index data in humans. J Gerontol A Biol Sci Med Sci. 2014;69(6):621–32. https://doi.org/10.1093/gerona/glt136.
Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, et al. Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res. 2002;90(4):390–7. https://doi.org/10.1161/01.res.0000012702.90501.8d.
Kranrod JW, Darwesh AM, Bassiouni W, Huang A, Fang L, Korodimas JV, et al. Cardioprotective action of a novel synthetic 19,20-EDP analog is SIRT dependent. J Cardiovasc Pharmacol. 2024;83(1):105–15. https://doi.org/10.1097/FJC.0000000000001495.
Article CAS PubMed Central Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Quiros PM, Goyal A, Jha P, Auwerx J. Analysis of mtDNA/nDNA ratio in mice. Curr Protoc Mouse Biol. 2017;7(1):47–54. https://doi.org/10.1002/cpmo.21.
Article CAS PubMed Central Google Scholar
Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc. 2012;7(6):1235–46. https://doi.org/10.1038/nprot.2012.058.
Valencia R, Kranrod JW, Fang L, Soliman AM, Azer B, Clemente-Casares X, et al. Linoleic acid-derived diol 12,13-DiHOME enhances NLRP3 inflammasome activation in macrophages. FASEB J. 2024;38(13): e23748. https://doi.org/10.1096/fj.202301640RR.
Zhabyeyev P, McLean B, Bassiouni W, Valencia R, Paul M, Darwesh AM, et al. Loss of PI3Kalpha mediates protection from myocardial ischemia-reperfusion injury linked to preserved mitochondrial function. J Am Heart Assoc. 2023;12(12): e022352. https://doi.org/10.1161/JAHA.122.022352.
Article PubMed Central Google Scholar
Melk A, Schmidt BM, Takeuchi O, Sawitzki B, Rayner DC, Halloran PF. Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int. 2004;65(2):510–20. https://doi.org/10.1111/j.1523-1755.2004.00438.x.
Lopes-Paciencia S, Saint-Germain E, Rowell M-C, Ruiz AF, Kalegari P, Ferbeyre GJC. The senescence-associated secretory phenotype and its regulation. 2019;11715–22.
Wang WJ, Cai GY, Chen XM. Cellular senescence, senescence-associated secretory phenotype, and chronic kidney disease. Oncotarget. 2017;8(38):64520–33.
Comments (0)