Task-specific dynamical entropy variations in EEG as a biomarker for Parkinson’s disease progression

Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet. 2006;7(4):306–18.

CAS  Google Scholar 

Singh S, Rai SN, Singh SK. Synaptic plasticity in neurodegenerative disorders. Boca Raton: CRC Press; 2024.

Google Scholar 

Rai SN. Recent advances in the treatment of neurodegenerative disorders. Sharjah: Bentham Science Publishers; 2021. p. 230.

Google Scholar 

Ramakrishna K, Viswanadh MK, Dumala N, Chakravarth G, Venkateswarlu K, Gutti G, Yadagiri G, Duguluri S, Rai SN. Advanced biomaterials in neuroprotection: innovations and clinical applications. Singapore: Springer; 2025. pp. 69–92. https://doi.org/10.1007/978-981-97-9959-6_4

Caviness JN, Driver-Dunckley E, Connor DJ, Sabbagh MN, Hentz JG, Noble B, Evidente VGH, Shill HA, Adler CH. Defining mild cognitive impairment in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society. 2007;22(9):1272–7.

Google Scholar 

Bartels AL, Leenders KL. Brain imaging in patients with freezing of gait. Movement disorders: official journal of the Movement Disorder Society. 2008;23(S2):461–7.

Google Scholar 

Rai SN, Singh S, Singh SK, editors. Neurodegenerative diseases: translational models, mechanisms, and therapeutics. 1st ed. Boca Raton: Routledge; 2025.

Google Scholar 

Kehagia AA, Barker RA, Robbins TW. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol. 2010;9(12):1200–13.

Google Scholar 

Reeve A, Simcox E, Turnbull D. Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev. 2014;14:19–30.

CAS  Google Scholar 

Cacciotti A, Pappalettera C, Miraglia F, Rossini PM, Vecchio F. EEG entropy insights in the context of physiological aging and Alzheimer’s and Parkinson’s diseases: a comprehensive review. GeroScience. 2024;1–21.

Prajapati C, Tripathi PN, Sood S, Rai SN, Mishra SS, Singh SK, Tiwari AK. In: Kumar G, Mukherjee S, Kumar S, editors. Intellectual property rights in neuroprotective biomaterials. Singapore: Springer; 2025. pp. 251–269. https://doi.org/10.1007/978-981-97-9959-6_10

Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology. 2003;226(2):315–36.

Google Scholar 

Stoessl AJ. Neuroimaging in Parkinson’s disease: from pathology to diagnosis. Parkinsonism & related disorders. 2012;18:55–9.

Google Scholar 

Michel CM, Murray MM. Towards the utilization of EEG as a brain imaging tool. Neuroimage. 2012;61(2):371–85.

Google Scholar 

Geraedts VJ, Marinus J, Gouw AA, Mosch A, Stam CJ, Hilten JJ, Contarino MF, Tannemaat MR. Quantitative EEG reflects non-dopaminergic disease severity in Parkinson’s disease. Clin Neurophysiol. 2018;129(8):1748–55.

Coan JA, Allen JJ, McKnight PE. A capability model of individual differences in frontal EEG asymmetry. Biol Psychol. 2006;72(2):198–207.

Google Scholar 

Reddy AG, Narava S. Artifact removal from EEG signals. Int J Comput Appl. 2013;77(13).

Yuvaraj R, Rajendra Acharya U, Hagiwara Y. A novel Parkinson’s disease diagnosis index using higher-order spectra features in EEG signals. Neural Comput Appl. 2018;30:1225–35.

Google Scholar 

Olcay BO, Onay F, Öztürk GA, Öniz A, Özgören M, Hummel T, Güdücü Ç. Using chemosensory-induced EEG signals to identify patients with de novo Parkinson’s disease. Biomed Signal Process Control. 2024;87:105438.

CAS  Google Scholar 

Yurchenko SB. A systematic approach to brain dynamics: cognitive evolution theory of consciousness. Cogn Neurodyn. 2023;17(3):575–603.

Google Scholar 

Faisal AA, Selen LP, Wolpert DM. Noise in the nervous system. Nat Rev Neurosci. 2008;9(4):292–303.

CAS  Google Scholar 

Yi G, Wang L, Chu C, Liu C, Zhu X, Shen X, Li Z, Wang F, Yang M, Wang J. Analysis of complexity and dynamic functional connectivity based on resting-state EEG in early Parkinson’s disease patients with mild cognitive impairment. Cogn Neurodyn. 2022;1–15.

Aljalal M, Aldosari SA, AlSharabi K, Abdurraqeeb AM, Alturki FA. Parkinson’s disease detection from resting-state EEG signals using common spatial pattern, entropy, and machine learning techniques. Diagnostics. 2022;12(5):1033.

Google Scholar 

Tao H-Y, Tian X. Coherence characteristics of gamma-band EEG during rest and cognitive task in mci and ad. In: 2005 IEEE engineering in medicine and biology 27th annual conference. IEEE; 2006. pp. 2747–2750.

Keller SM, Gschwandtner U, Meyer A, Chaturvedi M, Roth V, Fuhr P. Cognitive decline in Parkinson’s disease is associated with reduced complexity of EEG at baseline. Brain Commun. 2020;2(2):207.

Google Scholar 

Garrett DD, Samanez-Larkin GR, MacDonald SW, Lindenberger U, McIntosh AR, Grady CL. Moment-to-moment brain signal variability: a next frontier in human brain mapping? Neurosci Biobehav Rev. 2013;37(4):610–24.

Google Scholar 

Ionescu T. Exploring the nature of cognitive flexibility. New Ideas Psychol. 2012;30(2):190–200.

Google Scholar 

Haegens S, Cousijn H, Wallis G, Harrison PJ, Nobre AC. Inter-and intra-individual variability in alpha peak frequency. Neuroimage. 2014;92:46–55.

Google Scholar 

Henelius A, Korpela J, Huotilainen M. Individualising EEG frequency bands for sleep deprivation studies. In: 2011 Annual international conference of the IEEE engineering in medicine and biology society. IEEE; 2011. pp. 6083–6086.

Singhal S, Ghosh P, Kumar N, Banerjee A. Parametric separation of phase-locked and non-phase-locked activity. J Neurophysiol. 2023;129(1):199–210.

Google Scholar 

Cohen MX. Analyzing neural time series data: theory and practice. MIT press; 2014.

Yarden TS, Mizrahi A, Nelken I. Context-dependent inhibitory control of stimulus-specific adaptation. J Neurosci. 2022;42(23):4629–51.

CAS  Google Scholar 

Musslick S, Bizyaeva A. Examining cognitive flexibility and stability through the lens of dynamical systems. Curr Opin Behav Sci. 2024;57: 101375.

Google Scholar 

Cools R, Robbins TW. Chemistry of the adaptive mind. Phil Trans R Soc Lond Ser A Math Phys Eng Sci. 2004;362(1825):2871–88.

CAS  Google Scholar 

Uddin LQ. Cognitive and behavioural flexibility: neural mechanisms and clinical considerations. Nat Rev Neurosci. 2021;22(3):167–79.

CAS  Google Scholar 

Wang H, McIntosh AR, Kovacevic N, Karachalios M, Protzner AB. Age-related multiscale changes in brain signal variability in pre-task versus post-task resting-state EEG. J Cogn Neurosci. 2016;28(7):971–84.

CAS  Google Scholar 

Nucci L, Miraglia F, Pappalettera C, Rossini PM, Vecchio F. Exploring the complexity of EEG patterns in Parkinson’s disease. GeroScience. 2024;1–13.

Gómez C, Olde Dubbelink KT, Stam CJ, Abásolo D, Berendse HW, Hornero R. Complexity analysis of resting-state meg activity in early-stage Parkinson’s disease patients. Ann Biomed Eng. 2011;39:2935–44.

Google Scholar 

Ouchani M, Gharibzadeh S, Jamshidi M, Amini M. A review of methods of diagnosis and complexity analysis of Alzheimer’s disease using EEG signals. Biomed Res Int. 2021;2021:1–15.

Google Scholar 

Stam CJ. Nonlinear dynamical analysis of EEG and meg: review of an emerging field. Clin Neurophysiol. 2005;116(10):2266–301.

CAS  Google Scholar 

Takahashi T. Complexity of spontaneous brain activity in mental disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:258–66.

Google Scholar 

Chung C-C, Kang J-H, Yuan R-Y, Wu D, Chen C-C, Chi N-F, Chen P-C, Hu C-J. Multiscale entropy analysis of electroencephalography during sleep in patients with Parkinson disease. Clin EEG Neurosci. 2013;44(3):221–6.

Google Scholar 

Liang Z, Wang Y, Sun X, Li D, Voss LJ, Sleigh JW, Hagihira S, Li X. EEG entropy measures in anesthesia. Front Comput Neurosci. 2015;9:16.

CAS  Google Scholar 

Gao L, Wang J, Chen L. Event-related desynchronization and synchronization quantification in motor-related EEG by Kolmogorov entropy. J Neural Eng. 2013;10(3):036023.

Google Scholar 

Thul A, Lechinger J, Donis J, Michitsch G, Pichler G, Kochs EF, Jordan D, Ilg R, Schabus M. EEG entropy measures indicate decrease of cortical information processing in disorders of consciousness. Clin Neurophysiol. 2016;127(2):1419–27.

Kannathal N, Choo ML, Acharya UR, Sadasivan P. Entropies for detection of epilepsy in EEG. Comput Methods Programs Biomed. 2005;80(3):187–94.

CAS  Google Scholar 

Deng B, Cai L, Li S, Wang R, Yu H, Chen Y, Wang J. Multivariate multi-scale weighted permutation entropy analysis of EEG complexity for Alzheimer’s disease. Cogn Neurodyn. 2017;11:217–31.

Google Scholar 

Angulo-Ruiz BY, Munoz V, Rodríguez-Martínez EI, Cabello-Navarro C, Gomez CM. Multiscale entropy of ADHD children during resting state condition. Cogn Neurodyn. 2023;17(4):869–91.

Google Scholar 

Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series. Phys Rev Lett. 2002;88(17):174102.

Google Scholar 

Zanin M, Zunino L, Rosso OA, Papo D. Permutation entropy and its main biomedical and econophysics applications: a review. Entropy. 2012;14(8):1553–77.

Google Scholar 

Vasicek O. A test for normality based on sample entropy. J Roy Stat Soc Ser B (Methodol). 1976;38(1):54–9.

Google Scholar 

Pappalettera C, Miraglia F, Cotelli M, Rossini PM, Vecchio F. Analysis of complexity in the EEG activity of Parkinson’s disease patients by means of approximate entropy. GeroScience. 2022;44(3):1599–607.

Google Scholar 

Pezard L, Jech R. Investigation of non-linear properties of multichannel EEG in the early stages of Parkinson’s disease. Clin Neurophysiol. 2001;112(1):38–45.

CAS  Google Scholar 

Yi G-S, Wang J, Deng B, Wei X-L. Complexity of resting-state EEG activity in the patients with early-stage Parkinson’s disease. Cogn Neurodyn. 2017;11:147–60.

Google Scholar 

Syrkin-Nikolau J, Koop MM, Prieto T, Anidi C, Afzal MF, Velisar A, Blumenfeld Z, Martin T, Trager M, Bronte-Stewart H. Subthalamic neural entropy is a feature of freezing of gait in freely moving people with Parkinson’s disease. Neurobiol Dis. 2017;108:288–97.

Google Scholar 

Weber J, Abeln V, Steichele K, Foitschik T, Stuckenschneider T. Inefficient resource allocation is associated with reduced alpha activity in parietal regions in individuals with Parkinson’s disease. Eur J Neurosci. 2021;53(4):1225–37.

CAS  Google Scholar 

Frank MJ, Loughry B, O’Reilly RC. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn Affect Behav Neurosci. 2001;1(2):137–60.

CAS  Google Scholar 

Deco G, Jirsa VK, McIntosh AR. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci. 2011;12(1):43–56.

CAS  Google Scholar 

Sorrentino P, Rucco R, Baselice F, De Micco R, Tessitore A, Hillebrand A, Mandolesi L, Breakspear M, Gollo LL, Sorrentino G. Flexible brain dynamics underpins complex behaviours as observed in Parkinson’s disease. Sci Rep. 2021;11(1):4051.

CAS  Google Scholar 

Gu C, Liu Z-X, Woltering S. Electroencephalography complexity in resting and task states in adults with attention-deficit/hyperactivity disorder. Brain Commun. 2022;4(2):054.

Google Scholar 

Saxe GN, Calderone D, Morales LJ. Brain entropy and human intelligence: a resting-state fMRI study. PLoS ONE. 2018;13(2):0191582.

Google Scholar 

Xin X, Yu J, Gao X. The brain entropy dynamics in resting state. Front Neurosci. 2024;18:1352409.

Google Scholar 

Cieri F, Zhuang X, Caldwell JZ, Cordes D. Brain entropy during aging through a free energy principle approach. Front Hum Neurosci. 2021;15:647513.

Google Scholar 

Eqlimi E, Bockstael A, Schönwiesner M, Talsma D, Botteldooren D. Time course of EEG complexity reflects attentional engagement during listening to speech in noise. Eur J Neurosci. 2023;58(9):4043–69.

CAS  Google Scholar 

Averna A, Coelli S, Ferrara R, Cerutti S, Priori A, Bianchi AM. Entropy and fractal analysis of brain-related neurophysiological signals in Alzheimer’s and Parkinson’s disease. J Neural Eng. 2023;20(5):051001.

Comments (0)

No login
gif