Current Applications and Limitations of Augmented Reality in Urological Surgery: A Practical Primer and ‘State of the Field’

Shuhaiber JH. Augmented reality in surgery. Arch Surg. 2004;139(2):170–4. https://doi.org/10.1001/archsurg.139.2.170.

Article  PubMed  Google Scholar 

Rahman R, Wood ME, Qian L, Price CL, Johnson AA, Osgood GM. Head-Mounted display use in surgery: A systematic review. Surg Innov. 2020;27(1):88–100. doi: 10.1177/1553350619871787. PubMed PMID: 31514682.

PubMed  Google Scholar 

Roberts S, Desai A, Checcucci E, Puliatti S, Taratkin M, Kowalewski KF, et al. Augmented reality applications in urology: a systematic review. Minerva Urol Nephrol. 2022;74(5):528–37. https://doi.org/10.23736/S2724-6051.22.04726-7. PubMed Central PMCID: PMC35383432.

Article  PubMed  Google Scholar 

Checcucci E, Piana A, Volpi G, Piazzolla P, Amparore D, De Cillis S, et al. Three-dimensional automatic artificial intelligence driven augmented-reality selective biopsy during nerve-sparing robot-assisted radical prostatectomy: A feasibility and accuracy study. Asian J Urol. 2023;10(4):407–15. https://doi.org/10.1016/j.ajur.2023.08.001.

Article  PubMed  PubMed Central  Google Scholar 

Stone NN, Wilson MP, Griffith SH, Immerzeel J, Debruyne F, Gorin MA, et al. Remote surgical education using synthetic models combined with an augmented reality headset. Surg Open Sci. 2022;10:27–33. https://doi.org/10.1016/j.sopen.2022.06.004.

Article  PubMed  PubMed Central  Google Scholar 

Cosman PH, Cregan PC, Martin CJ, Cartmill JA. Virtual reality simulators: current status in acquisition and assessment of surgical skills. ANZ J Surg. 2002;72(1):30–4. https://doi.org/10.1046/j.1445-2197.2002.02293.xPubMed PMID: 11906421.

Article  PubMed  Google Scholar 

Bianchi L, Chessa F, Angiolini A, Cercenelli L, Lodi S, Bortolani B, et al. The use of augmented reality to guide the intraoperative frozen section during Robot-assisted radical prostatectomy. Eur Urol. 2021;80(4):480–8. https://doi.org/10.1016/j.eururo.2021.06.020.

Article  PubMed  Google Scholar 

Porpiglia F, Checcucci E, Amparore D, Peretti D, Piramide F, De Cillis S, et al. Percutaneous kidney puncture with Three-dimensional Mixed-reality hologram guidance: from preoperative planning to intraoperative navigation. Eur Urol. 2022;81(6):588–97. https://doi.org/10.1016/j.eururo.2021.10.023.

Article  PubMed  Google Scholar 

Quesada-Olarte J, Carrion RE Jr., Fernandez-Crespo R, Henry GD, Simhan J, Shridharani A, et al. Extended Reality-Assisted surgery as a surgical training tool: pilot study presenting first HoloLens-Assisted complex penile revision surgery. J Sex Med. 2022;19(10):1580–6. https://doi.org/10.1016/j.jsxm.2022.07.010.

Article  PubMed  Google Scholar 

Papalois Z-A, Aydın A, Khan A, Mazaris E, Rathnasamy Muthusamy AS, Dor FJMF, et al. HoloMentor: A novel mixed reality surgical anatomy curriculum for Robot-Assisted radical prostatectomy. Eur Surg Res. 2021;63(1):40–5. https://doi.org/10.1159/000520386.

Article  PubMed  Google Scholar 

Birlo M, Edwards PJE, Clarkson M, Stoyanov D. Utility of optical see-through head mounted displays in augmented reality-assisted surgery: A systematic review. Med Image Anal. 2022;77:102361. https://doi.org/10.1016/j.media.2022.102361.

Article  PubMed  PubMed Central  Google Scholar 

Milgram P, Takemura H, Utsumi A, Kishino F. Augmented reality: a class of displays on the reality-virtuality continuum. SPIE; 1995.

Andrews CM, Henry AB, Soriano IM, Southworth MK, Silva JR. Registration techniques for clinical applications of Three-Dimensional augmented reality devices. IEEE J Transl Eng Health Med. 2021;9:4900214. https://doi.org/10.1109/jtehm.2020.3045642. Epub 20201217.

Article  PubMed  Google Scholar 

Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: part I. IEEE Rob Autom Magazine. 2006;13(2):99–110. https://doi.org/10.1109/MRA.2006.1638022.

Article  Google Scholar 

Singh VKA, Nair A, Shreeraj P. A report on registration problems in augmented reality. Int J Eng Res Technol. 2014;3.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.

Article  PubMed  PubMed Central  Google Scholar 

Group OLoEW. The Oxford levels of evidence 2 Oxford Centre for Evidence-Based Medicine. 2011

Amparore D, Checcucci E, Piazzolla P, Piramide F, De Cillis S, Piana A, et al. Indocyanine green drives computer vision based 3D augmented reality robot assisted partial nephrectomy: the beginning of automatic. Overlapping Era Urol. 2022;164:e312–6. https://doi.org/10.1016/j.urology.2021.10.053.

Article  PubMed  Google Scholar 

Sica M, Piazzolla P, Amparore D, Verri P, De Cillis S, Piramide F, et al. 3D model artificial Intelligence-Guided automatic augmented reality images during robotic partial nephrectomy. Diagnostics. 2023;13(22):3454. https://doi.org/10.3390/diagnostics13223454. PubMed PMID:.

Article  PubMed  PubMed Central  Google Scholar 

Piana A, Amparore D, Sica M, Volpi G, Checcucci E, Piramide F et al. Automatic 3D Augmented-Reality Robot-Assisted Partial Nephrectomy Using Machine Learning: Our Pioneer Experience. Cancers (Basel). 2024;16(5). Epub 20240304. https://doi.org/10.3390/cancers16051047. PubMed PMID: 38473404; PubMed Central PMCID: PMCPMC10931272.

Mixed Reality. A Step Further for Planning Complex Renal Tumors (RENAL Nephrometry Score of 7 or Higher). Journal of Endourology. 2022;36(8):1136-42. https://doi.org/10.1089/end.2021.0798. PubMed PMID: 35262373.

Gadzhiev N, Semeniakin I, Morshnev A, Alcaraz A, Gauhar V, Okhunov Z. Role and utility of mixed reality technology in laparoscopic partial nephrectomy: outcomes of a prospective RCT using an Indigenously developed software. Adv Urol. 2022;2022:8992051. https://doi.org/10.1155/2022/8992051.

Article  PubMed  PubMed Central  Google Scholar 

Zou XC, Xu XD, Huang JB, Chao HC, Zeng T. The clinical application value of mixed reality in robotic laparoscopic partial nephrectomy. Front Oncol. 2024;14:1478051. Epub 20241106. doi: 10.3389/fonc.2024.1478051. PubMed PMID: 39568562; PubMed Central PMCID: PMCPMC11576271.

PubMed  PubMed Central  Google Scholar 

Liu W, Wang Y, Wang Z, Cao Z, Yu Y, Wang J, et al. The application of mixed reality navigation system in laparoscopic partial nephrectomy for highly complex renal tumors (RENAL score ≥ 10): a retrospective cohort study. Int J Surg. 2025;111(1):1513–6. https://doi.org/10.1097/js9.0000000000001983. Epub 20250101.

Article  PubMed  Google Scholar 

Grosso AA, Di Maida F, Lambertini L, Cadenar A, Coco S, Ciaralli E, et al. Three-dimensional virtual model for robot-assisted partial nephrectomy: a propensity-score matching analysis with a contemporary control group. World J Urol. 2024;42(1):338. https://doi.org/10.1007/s00345-024-05043-9. Epub 20240520.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sánchez-Margallo JA, Plaza de Miguel C, Fernández Anzules RA, Sánchez-Margallo FM. Application of mixed reality in medical training and surgical planning focused on minimally invasive surgery. Front Virtual Real. 2021;2. https://doi.org/10.3389/frvir.2021.692641.

Amparore D, Piramide F, Pecoraro A, Verri P, Checcucci E, De Cillis S, et al. Identification of recurrent anatomical clusters using Three-dimensional virtual models for complex renal tumors with an imperative indication for Nephron-sparing surgery: new technological tools for driving Decision-making. Eur Urol Open Sci. 2022;38:60–6. https://doi.org/10.1016/j.euros.2022.02.006.

Article  PubMed  PubMed Central  Google Scholar 

Li G, Cao Z, Wang J, Zhang X, Zhang L, Dong J, et al. Mixed reality models based on low-dose computed tomography technology in nephron-sparing surgery are better than models based on normal-dose computed tomography. Quant Imaging Med Surg. 2021;11(6):2658–68.

PubMed  PubMed Central  Google Scholar 

Acar A, Atoum J, Reed A, Li Y, Kavoussi N, Wu JY. Intraoperative gaze guidance with mixed reality. Healthc Technol Lett. 2023. https://doi.org/10.1049/htl2.12061.

Article  PubMed  PubMed Central  Google Scholar 

Cao Z, Xiu Y, Yu D, Li X, Yang C, Li Z. Clinical Value of Mixed Reality-Assisted Puncture Navigation for Percutaneous Nephrolithotripsy. Urology. 2023;176:219– 25. Epub 20230314. https://doi.org/10.1016/j.urology.2022.12.067. PubMed PMID: 36921844.

Meng X, Luo D, Mo R. Application value of surgical navigation system based on deep learning and mixed reality for guiding puncture in percutaneous nephrolithotomy: a retrospective study. BMC Urol. 2024;24(1):230. https://doi.org/10.1186/s12894-024-01618-1. Epub 20241021.

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Song H, Wang B, Xiao B, Hu W, Xu Y, et al. Application of mixed reality technology in the planning of PCNL for special types of complex upper urinary stones: A pilot study. Urology. 2025;196:40–7. https://doi.org/10.1016/j.urology.2024.09.024. Epub 20241029.

Article  PubMed  Google Scholar 

Wang L, Zhao Z, Wang G, Zhou J, Zhu H, Guo H, et al. Application of a three-dimensional visualization model in intraoperative guidance of percutaneous nephrolithotomy. Int J Urol. 2022;29(8):838–44. https://doi.org/10.1111/iju.14907.

Article  PubMed  Google Scholar 

Piana A, Gallioli A, Amparore D, Diana P, Territo A, Campi R, et al. Three-dimensional augmented Reality–guided Robotic-assisted kidney transplantation: breaking the limit of atheromatic plaques. Eur Urol. 2022;82(4):419–26. https://doi.org/10.1016/j.eururo.2022.07.003.

Article  PubMed  Google Scholar 

De Backer P, Van Praet C, Simoens J, Peraire Lores M, Creemers H, Mestdagh K, et al. Improving augmented reality through deep learning: Real-time instrument delineation in robotic renal surgery. Eur Urol. 2023;84(1):86–91. https://doi.org/10.1016/j.eururo.2023.02.024.

Article  PubMed 

Comments (0)

No login
gif