Nephrogenomics, precision medicine and the role of genetic testing in adult kidney disease management

Groopman, E. E. et al. Diagnostic utility of exome sequencing for kidney disease. N. Engl. J. Med. 380, 142–151 (2019).

Article  CAS  PubMed  Google Scholar 

Claus, L. R., Snoek, R., Knoers, N. V. A. M. & van Eerde, A. M. Review of genetic testing in kidney disease patients: diagnostic yield of single nucleotide variants and copy number variations evaluated across and within kidney phenotype groups. Am. J. Med. Genet. Part C Semin. Med. Genet. 190, 358–376 (2022).

Article  CAS  PubMed  Google Scholar 

Doreille, A. et al. Exome-first strategy in adult patients with CKD: a cohort study. Kidney Int. Rep. 8, 596–605 (2023).

Article  PubMed  Google Scholar 

Robert, T. et al. Diagnosis of kidney diseases of unknown etiology through biopsy-genetic analysis. Kidney Int. Rep. 8, 2077–2087 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Robert, T. et al. Beyond the kidney biopsy: genomic approach to undetermined kidney diseases. Clin. Kidney J. 17, sfad099 (2024).

Article  PubMed  Google Scholar 

Vivante, A. Genetics of chronic kidney disease. N. Engl. J. Med. 391, 627–639 (2024).

Article  CAS  PubMed  Google Scholar 

Smith, E. D. et al. A retrospective review of multiple findings in diagnostic exome sequencing: half are distinct and half are overlapping diagnoses. Genet. Med. 21, 2199–2207 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Köttgen, A. et al. Genetics in chronic kidney disease: conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 101, 1126–1141 (2022).

Article  Google Scholar 

Jayasinghe, K. et al. Clinical impact of genomic testing in patients with suspected monogenic kidney disease. Genet. Med. 23, 183–191 (2021).

Article  PubMed  Google Scholar 

Mallett, A. J. Which patients with CKD will benefit from genomic sequencing? Synthesizing progress to illuminate the future. Curr. Opin. Nephrol. Hypertens. 31, 541–547 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doreille, A., Rafat, C., Rondeau, E. & Mesnard, L. How I treat thrombotic microangiopathy in the era of rapid genomics. Blood 141, 147–155 (2023).

Article  CAS  PubMed  Google Scholar 

Yousfi, N. et al. Genomic analysis of adult thrombotic microangiopathies in less than 3 days: from rapid to fast genomics to treatment. Blood J. 144, 2266–2269 (2024).

Article  CAS  Google Scholar 

Vitsios, D., Dhindsa, R. S., Middleton, L., Gussow, A. B. & Petrovski, S. Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning. Nat. Commun. 12, 1504 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zipfel, P. F., Wiech, T., Stea, E. D. & Skerka, C. CFHR gene variations provide insights in the pathogenesis of the kidney diseases atypical hemolytic uremic syndrome and C3 glomerulopathy. J. Am. Soc. Nephrol. 31, 241–256 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fakhouri, F. & Frémeaux-Bacchi, V. Thrombotic microangiopathy in aHUS and beyond: clinical clues from complement genetics. Nat. Rev. Nephrol. 17, 543–553 (2021).

Article  CAS  PubMed  Google Scholar 

Vivarelli, M. et al. The role of complement in kidney disease: conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 106, 369–391 (2024).

Article  CAS  PubMed  Google Scholar 

Marsili, L., Duque, K. R., Bode, R. L., Kauffman, M. A. & Espay, A. J. Uncovering essential tremor genetics: the promise of long-read sequencing. Front. Neurol. 13, 821189 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Tanudisastro, H. A., Deveson, I. W., Dashnow, H. & MacArthur, D. G. Sequencing and characterizing short tandem repeats in the human genome. Nat. Rev. Genet. 25, 460–475 (2024).

Article  CAS  PubMed  Google Scholar 

Ayasreh, N. et al. Autosomal dominant tubulointerstitial kidney disease: clinical presentation of patients with ADTKD-UMOD and ADTKD-MUC1. Am. J. Kidney Dis. 72, 411–418 (2018).

Article  PubMed  Google Scholar 

Kirby, A. et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 45, 299–303 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ekici, A. B. et al. Renal fibrosis is the common feature of autosomal dominant tubulointerstitial kidney diseases caused by mutations in Mucin 1 or uromodulin. Kidney Int. 86, 589–599 (2014).

Article  CAS  PubMed  Google Scholar 

Blumenstiel, B. et al. Development and validation of a mass spectrometry-based assay for the molecular diagnosis of Mucin-1 kidney disease. J. Mol. Diagn. 18, 566–571 (2016).

Article  CAS  PubMed  Google Scholar 

Yamamoto, S. et al. Analysis of an ADTKD family with a novel frameshift mutation in MUC1 reveals characteristic features of mutant MUC1 protein. Nephrol. Dial. Transpl. 32, 2010–2017 (2017).

Article  CAS  Google Scholar 

Saei, H. et al. VNtyper enables accurate alignment-free genotyping of MUC1 coding VNTR using short-read sequencing data in autosomal dominant tubulointerstitial kidney disease. iScience 26, 107171 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bensouna, I. et al. Systematic screening of autosomal dominant tubulointerstitial kidney disease–MUC1 27dupC pathogenic variant through exome sequencing. J. Am. Soc. Nephrol. 36, 256–263 (2024).

Article  PubMed  Google Scholar 

Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okada, E. et al. Detecting MUC1 variants in patients clinicopathologically diagnosed with having autosomal dominant tubulointerstitial kidney disease. Kidney Int. Rep. 7, 857–866 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Ali, H. et al. PKD1 duplicated regions limit clinical utility of whole exome sequencing for genetic diagnosis of autosomal dominant polycystic kidney disease. Sci. Rep. 9, 4141 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Kolmogorov, M. et al. Scalable nanopore sequencing of human genomes provides a comprehensive view of haplotype-resolved variation and methylation. Nat. Methods 20, 1483–1492 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin, A. R. et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat. Genet. 51, 1560–1565 (2019).

Article  CAS  PubMed  Google Scholar 

Stark, Z. et al. Scaling national and international improvement in virtual gene panel curation via a collaborative approach to discordance resolution. Am. J. Hum. Genet. 108, 1551–1557 (2021).

Article  CAS 

Comments (0)

No login
gif