Fibroblast activation and heterogeneity in fibrotic disease

Rockey, D. C., Bell, P. D. & Hill, J. A. Fibrosis — a common pathway to organ injury and failure. N. Engl. J. Med. 372, 1138–1149 (2015).

Article  CAS  PubMed  Google Scholar 

Lurje, I., Gaisa, N. T., Weiskirchen, R. & Tacke, F. Mechanisms of organ fibrosis: emerging concepts and implications for novel treatment strategies. Mol. Asp. Med. 92, 101191 (2023).

Article  CAS  Google Scholar 

Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, D. et al. Early activation of fibroblasts is required for kidney repair and regeneration after injury. FASEB J. 33, 12576–12587 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gomes, R. N., Manuel, F. & Nascimento, D. S. The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen. Med. 6, 43 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Yuan, Q., Tan, R. J. & Liu, Y. Myofibroblast in kidney fibrosis: origin, activation, and regulation. Adv. Exp. Med. Biol. 1165, 253–283 (2019).

Article  CAS  PubMed  Google Scholar 

Huang, R., Fu, P. & Ma, L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal. Transduct. Target. Ther. 8, 129 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 7, 684–696 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kisseleva, T. & Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 18, 151–166 (2021).

Article  PubMed  Google Scholar 

Fu, H. et al. Tenascin-C is a major component of the fibrogenic niche in kidney fibrosis. J. Am. Soc. Nephrol. 28, 785–801 (2017).

Article  CAS  PubMed  Google Scholar 

Liu, X. et al. Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis. Kidney Int. 97, 1181–1195 (2020).

Article  CAS  PubMed  Google Scholar 

Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

Article  CAS  PubMed  Google Scholar 

Biasin, V. et al. PDGFRα and αSMA mark two distinct mesenchymal cell populations involved in parenchymal and vascular remodeling in pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 318, L684–L697 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mayr, C. H. et al. Sfrp1 inhibits lung fibroblast invasion during transition to injury-induced myofibroblasts. Eur. Respir. J. 63, 2301326 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng, C. C. et al. Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat. Commun. 12, 3709 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan, X. et al. Tumour vasculature at single-cell resolution. Nature 632, 429–436 (2024).

Article  CAS  PubMed  Google Scholar 

Alex, L. et al. Cardiac pericytes acquire a fibrogenic phenotype and contribute to vascular maturation after myocardial infarction. Circulation 148, 882–898 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsukui, T. et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 11, 1920 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ke, D. et al. Macrophage and fibroblast trajectory inference and crosstalk analysis during myocardial infarction using integrated single-cell transcriptomic datasets. J. Transl. Med. 22, 560 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abedini, A. et al. Single-cell multi-omic and spatial profiling of human kidneys implicates the fibrotic microenvironment in kidney disease progression. Nat. Genet. 56, 1712–1724 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Younesi, F. S., Miller, A. E., Barker, T. H., Rossi, F. M. V. & Hinz, B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 25, 617–638 (2024).

Article  CAS  PubMed  Google Scholar 

Fang, Y. et al. RUNX2 promotes fibrosis via an alveolar-to-pathological fibroblast transition. Nature 640, 221–230 (2025).

Article  CAS  PubMed  Google Scholar 

Tsukui, T., Wolters, P. J. & Sheppard, D. Alveolar fibroblast lineage orchestrates lung inflammation and fibrosis. Nature 631, 627–634 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mukhatayev, Z., Adilbayeva, A. & Kunz, J. CTHRC1: an emerging hallmark of pathogenic fibroblasts in lung fibrosis. Cells 13, 946 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, Y. et al. Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation. Cancer Cell 42, 1764–1783.e10 (2024).

Article  CAS  PubMed  Google Scholar 

Lei, L. et al. Portal fibroblasts with mesenchymal stem cell features form a reservoir of proliferative myofibroblasts in liver fibrosis. Hepatology 76, 1360–1375 (2022).

Article  CAS  PubMed  Google Scholar 

Peisker, F. et al. Mapping the cardiac vascular niche in heart failure. Nat. Commun. 13, 3027 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suryawanshi, H. et al. Detection of infiltrating fibroblasts by single-cell transcriptomics in human kidney allografts. PLoS One 17, e0267704 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong, Y. et al. Single cell RNA-sequencing identifies bone-marrow-derived progenitor cells as a main source of extracellular matrix-producing cells across multiple organ-based fibrotic diseases. Int. J. Biol. Sci. 20, 5027–5042 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Cadinu, P. et al. Charting the cellular biogeography in colitis reveals fibroblast trajectories and coordinated spatial remodeling. Cell 187, 2010–2028.e30 (2024).

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif