Understanding solid-state battery electrolytes using atomistic modelling and machine learning

Tian, Y. et al. Promises and challenges of next-generation ‘Beyond Li-ion’ batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2021).

Article  CAS  PubMed  Google Scholar 

Grey, C. P. & Hall, D. S. Prospects for lithium-ion batteries and beyond — a 2030 vision. Nat. Commun. 11, 6279 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 14, 420 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

Article  CAS  PubMed  Google Scholar 

Zhao, Q., Stalin, S., Zhao, C.-Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020).

Article  CAS  Google Scholar 

Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

Article  CAS  PubMed  Google Scholar 

Usiskin, R. et al. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 6, 1020–1035 (2021).

Article  CAS  Google Scholar 

Xiao, Y. et al. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020).

Article  CAS  Google Scholar 

Janek, J. & Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023).

Article  Google Scholar 

Jain, A., Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016).

Article  CAS  Google Scholar 

Van der Ven, A., Deng, Z., Banerjee, S. & Ong, S. P. Rechargeable alkali-ion battery materials: theory and computation. Chem. Rev. 120, 6977–7019 (2020).

Article  PubMed  Google Scholar 

Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

Article  CAS  PubMed  Google Scholar 

Jun, K., Chen, Y., Wei, G., Yang, X. & Ceder, G. Diffusion mechanisms of fast lithium-ion conductors. Nat. Rev. Mater. 9, 887–905 (2024).

Article  CAS  Google Scholar 

Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

Article  Google Scholar 

Zhang, Z. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).

Article  CAS  Google Scholar 

Franco, A. A. et al. Boosting rechargeable batteries R&D by multiscale modeling: myth or reality? Chem. Rev. 119, 4569–4627 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wan, T. H. & Ciucci, F. Electro-chemo-mechanical modeling of solid-state batteries. Electrochim. Acta 331, 135355 (2020).

Article  CAS  Google Scholar 

Melander, M. M., Wu, T., Weckman, T. & Honkala, K. Constant inner potential DFT for modelling electrochemical systems under constant potential and bias. npj Comput. Mater. 10, 5 (2024).

Article  Google Scholar 

Song, Z. et al. A reflection on polymer electrolytes for solid-state lithium metal batteries. Nat. Commun. 14, 4884 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, K. et al. Computational and data-driven modelling of solid polymer electrolytes. Digit. Discov. 2, 1660–1682 (2023).

Article  CAS  Google Scholar 

Prasanth S, R., Prasannavenkadesan, V., Katiyar, V. & Achalkumar, A. S. Polymer electrolytes: evolution, challenges, and future directions for lithium-ion batteries. RSC Appl. Polym. 3, 499–531 (2025).

Article  Google Scholar 

Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

Article  Google Scholar 

Busche, M. R. et al. Dynamic formation of a solid–liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem. 8, 426–434 (2016).

Article  CAS  PubMed  Google Scholar 

Huo, H. & Janek, J. Solid-state batteries: from ‘all-solid’ to ‘almost-solid’. Natl Sci. Rev. 10, nwad098 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Woolley, H. M. & Vargas-Barbosa, N. M. Hybrid solid electrolyte–liquid electrolyte systems for (almost) solid-state batteries: why, how, and where to? J. Mater. Chem. A 11, 1083–1097 (2023).

Article  CAS  Google Scholar 

Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).

Article  CAS  PubMed  Google Scholar 

Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).

Article  CAS  PubMed  Google Scholar 

Wang, C. et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020).

Article  CAS  PubMed  Google Scholar 

Yu, S. & Siegel, D. J. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 29, 9639–9647 (2017).

Article  CAS  Google Scholar 

Hofstetter, K., Samson, A. J., Narayanan, S. & Thangadurai, V. Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium. J. Power Sources 390, 297–312 (2018).

Article  CAS  Google Scholar 

Inaguma, Y. et al. High ionic conductivity in lithium lanthanum titanate. Solid. State Commun. 86, 689–693 (1993).

Article  CAS  Google Scholar 

Stramare, S., Thangadurai, V. & Weppner, W. Lithium lanthanum titanates: a review. Chem. Mater. 15, 3974–3990 (2003).

Article  CAS  Google Scholar 

Zhao, Y. & Daemen, L. L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 134, 15042–15047 (2012).

Article  CAS  PubMed  Google Scholar 

Dawson, J. A., Famprikis, T. & Johnston, K. E. Anti-perovskites for solid-state batteries: recent developments, current challenges and future prospects. J. Mater. Chem. A 9, 18746–18772 (2021).

Article  CAS  Google Scholar 

Ma, C. et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Env. Sci. 7, 1638–1642 (2014).

Article  CAS  Google Scholar 

Xiao, Y. et al. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nat. Mater. 20, 984–990 (2021).

Article  CAS  PubMed 

Comments (0)

No login
gif