Tian, Y. et al. Promises and challenges of next-generation ‘Beyond Li-ion’ batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2021).
Article CAS PubMed Google Scholar
Grey, C. P. & Hall, D. S. Prospects for lithium-ion batteries and beyond — a 2030 vision. Nat. Commun. 11, 6279 (2020).
Article CAS PubMed PubMed Central Google Scholar
Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 14, 420 (2023).
Article CAS PubMed PubMed Central Google Scholar
Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).
Article CAS PubMed Google Scholar
Zhao, Q., Stalin, S., Zhao, C.-Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020).
Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).
Article CAS PubMed Google Scholar
Usiskin, R. et al. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 6, 1020–1035 (2021).
Xiao, Y. et al. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020).
Janek, J. & Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023).
Jain, A., Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016).
Van der Ven, A., Deng, Z., Banerjee, S. & Ong, S. P. Rechargeable alkali-ion battery materials: theory and computation. Chem. Rev. 120, 6977–7019 (2020).
Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).
Article CAS PubMed Google Scholar
Jun, K., Chen, Y., Wei, G., Yang, X. & Ceder, G. Diffusion mechanisms of fast lithium-ion conductors. Nat. Rev. Mater. 9, 887–905 (2024).
Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).
Zhang, Z. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).
Franco, A. A. et al. Boosting rechargeable batteries R&D by multiscale modeling: myth or reality? Chem. Rev. 119, 4569–4627 (2019).
Article CAS PubMed PubMed Central Google Scholar
Wan, T. H. & Ciucci, F. Electro-chemo-mechanical modeling of solid-state batteries. Electrochim. Acta 331, 135355 (2020).
Melander, M. M., Wu, T., Weckman, T. & Honkala, K. Constant inner potential DFT for modelling electrochemical systems under constant potential and bias. npj Comput. Mater. 10, 5 (2024).
Song, Z. et al. A reflection on polymer electrolytes for solid-state lithium metal batteries. Nat. Commun. 14, 4884 (2023).
Article CAS PubMed PubMed Central Google Scholar
Wang, K. et al. Computational and data-driven modelling of solid polymer electrolytes. Digit. Discov. 2, 1660–1682 (2023).
Prasanth S, R., Prasannavenkadesan, V., Katiyar, V. & Achalkumar, A. S. Polymer electrolytes: evolution, challenges, and future directions for lithium-ion batteries. RSC Appl. Polym. 3, 499–531 (2025).
Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).
Busche, M. R. et al. Dynamic formation of a solid–liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem. 8, 426–434 (2016).
Article CAS PubMed Google Scholar
Huo, H. & Janek, J. Solid-state batteries: from ‘all-solid’ to ‘almost-solid’. Natl Sci. Rev. 10, nwad098 (2023).
Article PubMed PubMed Central Google Scholar
Woolley, H. M. & Vargas-Barbosa, N. M. Hybrid solid electrolyte–liquid electrolyte systems for (almost) solid-state batteries: why, how, and where to? J. Mater. Chem. A 11, 1083–1097 (2023).
Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).
Article CAS PubMed Google Scholar
Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).
Article CAS PubMed Google Scholar
Wang, C. et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020).
Article CAS PubMed Google Scholar
Yu, S. & Siegel, D. J. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 29, 9639–9647 (2017).
Hofstetter, K., Samson, A. J., Narayanan, S. & Thangadurai, V. Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium. J. Power Sources 390, 297–312 (2018).
Inaguma, Y. et al. High ionic conductivity in lithium lanthanum titanate. Solid. State Commun. 86, 689–693 (1993).
Stramare, S., Thangadurai, V. & Weppner, W. Lithium lanthanum titanates: a review. Chem. Mater. 15, 3974–3990 (2003).
Zhao, Y. & Daemen, L. L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 134, 15042–15047 (2012).
Article CAS PubMed Google Scholar
Dawson, J. A., Famprikis, T. & Johnston, K. E. Anti-perovskites for solid-state batteries: recent developments, current challenges and future prospects. J. Mater. Chem. A 9, 18746–18772 (2021).
Ma, C. et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Env. Sci. 7, 1638–1642 (2014).
Xiao, Y. et al. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nat. Mater. 20, 984–990 (2021).
Comments (0)