Araki, T. The history of optical microscope. Mech. Eng. Rev. 4, 16-00242 (2017).
Röntgen, W. K. A new form of radiation. Science 3, 726–729 (1896).
Feynman, R. Electrical Engineering Handbook 3–12 (CRC, 2012).
Lu, W., Yao, J., Zhu, X. & Qi, Y. Nanomedicines: redefining traditional medicine. Biomed. Pharmacother. 134, 111103 (2021).
Article CAS PubMed Google Scholar
Iacovacci, V., Diller, E., Ahmed, D. & Menciassi, A. Medical microrobots. Annu. Rev. Biomed. Eng. 26, 561–591 (2024).
Article CAS PubMed Google Scholar
Del Campo Fonseca, A. & Ahmed, D. Ultrasound robotics for precision therapy. Adv. Drug Deliv. Rev. 205, 115164 (2024).
Nelson, B. J. & Pané, S. Delivering drugs with microrobots. Science 382, 1120–1122 (2023).
Article CAS PubMed Google Scholar
Strebhardt, K. & Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 8, 473–480 (2008).
Article CAS PubMed Google Scholar
Go, G. et al. Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo. Sci. Robot. 5, eaay6626 (2020).
Wrede, P. et al. Real-time 3D optoacoustic tracking of cell-sized magnetic microrobots circulating in the mouse brain vasculature. Sci. Adv. 8, eabm9132 (2022).
Article CAS PubMed PubMed Central Google Scholar
Del Campo Fonseca, A. et al. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat. Commun. 14, 5889 (2023).
Article PubMed PubMed Central Google Scholar
Gwisai, T. et al. Engineering living immunotherapeutic agents for improved cancer treatment. Adv. Ther. 7, 2300302 (2024).
Go, G. et al. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer. Sci. Adv. 8, eabq8545 (2022).
Article CAS PubMed PubMed Central Google Scholar
Simó, C. et al. Urease-powered nanobots for radionuclide bladder cancer therapy. Nat. Nanotechnol. 19, 554–564 (2024).
Article PubMed PubMed Central Google Scholar
Li, N. et al. Human-scale navigation of magnetic microrobots in hepatic arteries. Sci. Robot. 9, eadh8702 (2024).
Chen, C., Ding, S. & Wang, J. Materials consideration for the design, fabrication and operation of microscale robots. Nat. Rev. Mater. 9, 159–172 (2024).
Soto, F. et al. Smart materials for microrobots. Chem. Rev. 122, 5365–5403 (2022).
Article CAS PubMed Google Scholar
Kim, J. et al. Advanced materials for micro/nanorobotics. Chem. Soc. Rev. 53, 9190–9253 (2024).
Article CAS PubMed Google Scholar
Xu, H., Medina-Sánchez, M., Maitz, M. F., Werner, C. & Schmidt, O. G. Sperm micromotors for cargo delivery through flowing blood. ACS Nano 14, 2982–2993 (2020).
Article CAS PubMed Google Scholar
Alapan, Y., Bozuyuk, U., Erkoc, P., Karacakol, A. C. & Sitti, M. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Sci. Robot. 5, eaba5726 (2020).
Bozuyuk, U., Wrede, P., Yildiz, E. & Sitti, M. Roadmap for clinical translation of mobile microrobotics. Adv. Mater. 36, e2311462 (2024).
Yasa, I. C., Ceylan, H., Bozuyuk, U., Wild, A.-M. & Sitti, M. Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. Sci. Robot. 5, eaaz3867 (2020).
Olsen Alstrup, A. K. & Winterdahl, M. Imaging techniques in large animals. Scand. J. Lab. Anim. Sci. 36, 55–66 (2014).
Koba, W. et al. Imaging devices for use in small animals. Semin. Nucl. Med. 41, 151–165 (2011).
Aziz, A. et al. Nanomaterial-decorated micromotors for enhanced photoacoustic imaging. J. Micro Bio Robot. 19, 37–45 (2023).
Nauber, R., Hoppe, J., Robles, D. C. & Medina-Sánchez, M. Photoacoustics-guided real-time closed-loop control of magnetic microrobots through deep learning. In Int. Conf. Manipul. Autom. Robot. Small Scales (MARSS) 1–5 (IEEE, 2024).
Nothnagel, N. et al. Steering of magnetic devices with a magnetic particle imaging system. IEEE Trans. Biomed. Eng. 63, 2286–2293 (2016).
Park, J., Kim, J.-Y., Pané, S., Nelson, B. J. & Choi, H. Acoustically mediated controlled drug release and targeted therapy with degradable 3D porous magnetic microrobots. Adv. Healthc. Mater. 10, e2001096 (2021).
Dogan, N. O. et al. Remotely guided immunobots engaged in anti-tumorigenic phenotypes for targeted cancer immunotherapy. Small 18, e2204016 (2022).
Akolpoglu, M. B. et al. Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery. Sci. Adv. 8, eabo6163 (2022).
Article CAS PubMed PubMed Central Google Scholar
Sridhar, V. et al. Designing covalent organic framework-based light-driven microswimmers toward therapeutic applications. Adv. Mater. 35, e2301126 (2023).
Jooss, V. M., Bolten, J. S., Huwyler, J. & Ahmed, D. In vivo acoustic manipulation of microparticles in zebrafish embryos. Sci. Adv. 8, eabm2785 (2022).
Article CAS PubMed PubMed Central Google Scholar
Lo, W.-C., Fan, C.-H., Ho, Y.-J., Lin, C.-W. & Yeh, C.-K. Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles. Proc. Natl Acad. Sci. USA 118, e2023188118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Dabbagh, S. R. et al. 3D-printed microrobots from design to translation. Nat. Commun. 13, 5875 (2022).
Article CAS PubMed PubMed Central Google Scholar
Wei, K., Tang, C., Ma, H., Fang, X. & Yang, R. 3D-printed microrobots for biomedical applications. Biomater. Sci. 12, 4301–4334 (2024).
Article CAS PubMed Google Scholar
Aziz, A. et al. Medical imaging of microrobots: toward in vivo applications. ACS Nano 14, 10865–10893 (2020).
Article CAS PubMed Google Scholar
Sitti, M. Physical intelligence as a new paradigm. Extrem. Mech. Lett. 46, 101340 (2021).
Comments (0)