Ionic potential for battery materials

Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

Article  CAS  PubMed  Google Scholar 

Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

Article  CAS  Google Scholar 

Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

Article  CAS  PubMed  Google Scholar 

Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 46, 1053–1061 (2013).

Article  CAS  PubMed  Google Scholar 

Godshall, N. A., Raistrick, I. D. & Huggins, R. A. Thermodynamic investigations of ternary lithium-transition metal-oxygen cathode materials. Mater. Res. Bull. 15, 561–570 (1980).

Article  CAS  Google Scholar 

Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0<x<1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

Article  CAS  Google Scholar 

Ozawa, K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ion. 69, 212–221 (1994).

Article  CAS  Google Scholar 

Reimers, J. N. & Dahn, J. R. Electrochemical and in situ X‐ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091–2097 (1992).

Article  CAS  Google Scholar 

Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

Article  CAS  PubMed  Google Scholar 

Kim, S.-W., Seo, D.-H., Ma, X., Ceder, G. & Kang, K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2, 710–721 (2012).

Article  CAS  Google Scholar 

Slater, M. D., Kim, D., Lee, E. & Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013).

Article  CAS  Google Scholar 

Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

Article  CAS  PubMed  Google Scholar 

Gong, Z. & Yang, Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ. Sci. 4, 3223–3242 (2011).

Article  CAS  Google Scholar 

Kim, T., Song, W., Son, D.-Y., Ono, L. K. & Qi, Y. Lithium-ion batteries: outlook on present, future, and hybridized technologies. J. Mater. Chem. A 7, 2942–2964 (2019).

Article  CAS  Google Scholar 

Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

Article  CAS  Google Scholar 

Chen, R., Li, Q., Yu, X., Chen, L. & Li, H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020).

Article  CAS  PubMed  Google Scholar 

Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

Article  Google Scholar 

Pan, H., Hu, Y.-S. & Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338–2360 (2013).

Article  CAS  Google Scholar 

Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).

Article  CAS  Google Scholar 

Schweidler, S. et al. High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 9, 266–281 (2024).

Article  Google Scholar 

Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976).

Article  Google Scholar 

Cartledge, G. H. Studies on the periodic system. i. The ionic potential as a periodic function1. J. Am. Chem. Soc. 50, 2855–2863 (1928).

Article  CAS  Google Scholar 

Railsback, L. B. An earth scientist’s periodic table of the elements and their ions. Geology 31, 737–740 (2003).

Article  CAS  Google Scholar 

Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461–472 (1983).

Article  CAS  Google Scholar 

Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).

Article  CAS  Google Scholar 

Hyooma, H. & Hayashi, K. Crystal structures of La3Li5M2O12 (M = Nb, Ta). Mater. Res. Bull. 23, 1399–1407 (1988).

Article  CAS  Google Scholar 

Deiseroth, H.-J. et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. 47, 755–758 (2008).

Article  CAS  Google Scholar 

Railsback, L. B. An earth scientist’s periodic table of the elements and their ions. GSA Bull. 117, 746–746 (2005).

Article  Google Scholar 

Railsback, L. B. Some fundamentals of mineralogy and geochemistry. Univ. Georgia https://railsback.org/FundamentalsIndex.html (2006).

Sun, Y., Guo, S. & Zhou, H. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ. Sci. 12, 825–840 (2019).

Article  CAS  Google Scholar 

Rong, X. et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition. Joule 3, 503–517 (2019).

Article  CAS  Google Scholar 

Yu, H. et al. An ultrastable anode for long-life room-temperature sodium-ion batteries. Angew. Chem. Int. Ed. 53, 8963–8969 (2014).

Article  CAS  Google Scholar 

Thackeray, M. M. et al. Spinel electrodes for lithium batteries — a review. J. Power Sources 21, 1–8 (1987).

Article  CAS  Google Scholar 

Kim, H. et al. Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery. Chem. Mater. 25, 3614–3622 (2013).

Article  CAS  Google Scholar 

Lee, B. et al. First-principles study of the reaction mechanism in sodium–oxygen batteries. Chem. Mater. 26, 1048–1055 (2014).

Article  CAS  Google Scholar 

Jian, Z. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156–160 (2013).

Article  CAS  Google Scholar 

Kawai, K., Zhao, W., Nishimura, S. & Yamada, A. High-voltage Cr4+/Cr3+ redox couple in polyanion compounds. ACS Appl. Energy Mater. 1, 928–931 (2018).

Article  CAS  Google Scholar 

Jiang, Y. et al. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv. Energy Mater. 5, 1402104 (2015).

Article  Google Scholar 

Zhao, C. et al. Novel methods for sodium-ion battery materials. Small Methods 1, 1600063 (2017).

Article  Google Scholar 

Kim, H. et al. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6, 1600943 (2016).

Comments (0)

No login
gif